摘要:
A method is disclosed for integrally forming at least one low voltage device and at least one high voltage device. According to the method, a first gate structure and a second gate structure are formed on a semiconductor substrate, wherein the first and second gate structures are isolated from one another. One or more first double diffused regions are formed adjacent to the first gate structure in the semiconductor substrate. One or more second double diffused regions are formed adjacent to the second gate structure in the semiconductor substrate. One or more first source/drain regions are formed within the first double diffused regions. One or more second source/drain regions are formed within the second double diffused regions. The first double diffused regions function as one or more lightly doped source/drain regions for the low voltage device.
摘要:
A power metal-oxide semiconductor device provides an P-type base region that includes the N+ device source and is biased differently than the P-type substrate by application of an electrical load. In one embodiment, an LDMOS device with a NPN configuration is used but the coupling of the device source to the base contact prevents the NPN parasitic device from operating. The P-type base is formed in an N-well that separates the base from the P-type substrate and surrounding P-wells. Vertical punch-through is prevented by a high-impurity N+ buried layer that separates the N-well from the P-type substrate.
摘要:
A semiconductor device. The semiconductor device comprises an isolation structure and two heavily doped regions of a second conductivity type spaced apart from each other by the isolation structure. The isolation structure comprises an isolation region in a semiconductor substrate and a heavily doped region of the first conductivity type. The isolation region has an opening and the heavily doped region of the first conductivity type is substantially surrounded by the opening of the isolation region.
摘要:
A semiconductor device. The semiconductor device comprises an isolation structure and two heavily doped regions of a second conductivity type spaced apart from each other by the isolation structure. The isolation structure comprises an isolation region in a semiconductor substrate and a heavily doped region of the first conductivity type. The isolation region has an opening and the heavily doped region of the first conductivity type is substantially surrounded by the opening of the isolation region.
摘要:
A process for fabricating a flash EEPROM device, incorporating a shallow, heavily doped, source side region, used to improve the endurance of the flash EEPROM device, has been developed. The process features placing a shallow, ion implanted arsenic region, in the semiconductor substrate, adjacent to one side of a floating gate structure, prior to creation of the control gate structure. The addition of the shallow, ion implanted arsenic region, improves the coupling ratio at the source, which in turn results in the ability of the flash EEPROM device to sustain about 1,000,000 program/erase cycles, compared to counterparts, fabricated without the shallow, source side region, only able to sustain about 400,000 program/erase cycles.
摘要:
A method of forming a number of closely spaced electrodes is described wherein covering the electrodes with a conformal layer of oxide or nitride deposited using plasma enhanced chemical vapor deposition does not result in the formation of restricted regions or keyholes between adjacent electrodes. The method uses de-focussing to form the electrode mask pattern in a layer of photoresist. The focal plane in which the electrode pattern is focussed is positioned a de-focus distance above the layer of photoresist. The de-focus method results in electrodes having a trapezoidal cross section wherein the bottom of the electrode is wider than the top of the electrode. The trapezoidal cross section avoids the formation of restricted regions or keyholes when the electrodes are covered with a conformal dielectric layer, such as a layer of oxide or nitride deposited using plasma enhanced chemical vapor deposition.
摘要:
A method for manufacturing integrated circuit semiconductor device is provided for doping polysilicon formed on an N-well in a semiconductor substrate. Form a silicon oxide layer on the N-well. Then form a blanket polysilicon layer over the silicon oxide layer and pattern the polysilicon layer into a structure. Form a sacrificial oxide layer over the polysilicon structure. Then ion implant .sup.49 (BF.sub.2).sup.+ ions into the N-well and the polysilicon layer forming the source/drain regions and doping the polysilicon layer with P-type dopant thereby forming a doped polysilicon layer from the polysilicon layer. Then etch the sacrificial oxide layer away from the device. Form a polyoxide layer over the polysilicon structure. Then form a silicon oxide layer over the polyoxide layer followed by forming a glass layer thereover.
摘要:
A method of forming an image sensor is disclosed. A partially processed semiconductor wafer is provide, containing p-type and/or n-type regions which are bounded by isolation regions and with gate oxide layers grown on the surfaces upon which gate electrode structures are disposed, some of said gate electrode structures will serve as gate electrodes of image sensor transistors. Ions are implanted to form source/drain structures about the said gate electrode structures. To form photodiodes ions are implanted in two steps overlapping a source/drain region. A deeper implant provides a low charge carrier density region and a shallow implant provides a high charge carrier density region near the surface. A blanket transparent insulating layer is deposited.
摘要:
A process of fabricating an image sensor cell, on a semiconductor substrate, with the image sensor cell exhibiting low dark current generation, and high signal to noise ratio, has been developed. The process features the use of a photoresist shape, used to protect a previously formed photodiode element, from an reactive ion etching procedure, used to define insulator spacers on the sides of a polysilicon gate structure, of a reset transistor structure This process sequence avoids damage to the surface of an N type component, of the photodiode element, resulting in the improved electrical characteristics, when compared to counterpart image sensor cells, in which the photodiode element was subjected to the insulator spacer definition procedure.
摘要:
A method is described for forming P-channel field effect transistors having shallow source/drain junctions and improved reliability for CMOS circuits. The method involves forming both N-channel and P-channel FETs by alternate photoresist masking and ion implantation. The shallow junction self-aligned source/drain areas for P-channel FETs are formed by implanting boron difluoride (BF.sub.2) ions. In more conventional processing, the BF.sub.2 ions implanted in the P-channel FET gate electrodes during the source/drain implant results in outgassing of fluorine from the gate electrodes after the interlevel dielectric (ILD) layer is deposited. This can result in void formation, or delamination, at the interface between the gate electrode and the ILD. The current invention provides an improved process which uses a photoresist block-out mask to eliminate the implantation of the BF.sub.2.sup.+ ions in the P-channel FET gate electrodes during the formation of the self-aligned P.sup.+ source/drain regions. This prevents voids from forming at the gate electrode/ILD interface after the ILD layer is deposited and subsequent high-temperature processing steps are performed. The invention also reduces the enhanced boron diffusion in the P-FET gate oxide that can degrade the threshold voltage.