摘要:
A catalytic converter suitable for use in controlling automotive exhaust emissions including a honeycomb heater disposed downstream of a main monolithic catalyst or between main monolithic catalysts. The honeycomb heater includes a honeycomb structure with a catalyst carried thereon and with at least two electrodes provided thereon to supply a current thereto. A catalytic converter also includes a monolith catalyst for ignition which is disposed downstream of the honeycomb heater. A catalytic converter includes, in place of the honeycomb heater and the monolithic catalyst, a module which is composed of a catalyzed light-off honeycomb heater or of a honeycomb heater and a light-off monolithic catalyst. The module is removably disposed upstream or downstream of a main monolithic catalyst, or between main monolithic catalysts.
摘要:
A resistance heater according to the present invention comprises a honeycomb structure having a large number of passages. The honeycomb structure is provided with at least two electrodes through which a current is supplied thereto. The honeycomb structure also has a means to attain a current density of 5 A/mm.sup.2 or above between the electrodes such as slits within the honeycomb structure. A current is supplied between the electrodes at a current density of 5 A/mm.sup.2 or above.
摘要:
A resistance adjusting type heater including a honeycomb structure having a large number of passages, at last two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism such as a slit provided between the electrodes to heat the gas flowing through the passages formed in the honeycomb structure. A catalytic converter includes a main monolith catalyst and the above-described heater placed adjacent to and upstream of the main monolith catalyst. A catalytic converter includes a honeycomb structure having a large number of passages, a catalyst carried on the honeycomb structure, at least two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism provided between the electrode. A catalytic converter includes a main monolith catalyst, and a heater placed adjacent to and upstream of the main monolith catalyst. The heater includes a honeycomb structure having a large number of passages, a catalyst carried on the honeycomb structure, at least two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism provided between the electrodes.
摘要:
A sintered metal body is disclosed of composition consisting essentially of in weight percent about 5 to 40 Cr, about 2 to 30 Al, 0 to about 5 special metal, 0 to about 4 rare earth oxide additive, and the balance Fe group metal and unavoidable impurities,the composition including at least one component selected from component A and/or component B, component A being special metal, and component B being at least an effective amount of rare earth oxide additive,the special metal being a first special metal component, and optionally, a second special metal component when rare earth oxide additive is 0, the first special metal component consisting of at least one of: Y, lanthanides, Zr, Hf, Ti, Si, and B, and the second special metal component consisting of at least one of: alkaline earth metal, Cu, and Sn, and the special metal being a third special metal component when rare earth oxide additive is >0, the third special metal component consisting of at least one of Y, lanthanides, Zr, Hf, Ti, Si, alkaline earth metal, B, Cu, and Sn.The body is excellent in oxidation resistance at high temperatures, heat resistance, and corrosion resistance, and can be suitably used by itself as a carrier for catalysts, for exhaust gas purification, etc., or as a monolith catalyst comprising catalyst carrier and catalyst supported thereon, and as a heater or catalytic converter by providing electrodes on the body.
摘要:
A heat-resistant metallic monolith, manufactured by forming metal powders into a honeycomb structure and by sintering the structure, has a heat-resistant metal oxide coated on the surface of the cell walls and that of the pores thereof. Such a heat-resistant metallic monolith is manufactured by mixing metal powders, an organic binder and water to prepare a mixture, by forming the mixture into a shape of a desired honeycomb configuration, by sintering the shape in a non-oxidizing atmosphere at a temperature between 1000.degree. and 1450.degree. C. and then by coating a heat-resistant metal oxide on a surface of the cell walls and that of the pores of the obtained sintered body.
摘要:
A catalytic converter suitable for use in controlling automotive exhaust emissions including honeycomb heaters which are respectively disposed upstream and downstream of a main monolithic catalyst. Each honeycomb heater includes a honeycomb structure with at least two electrodes provided thereon to supply a current to the honeycomb structure.
摘要:
A honeycomb heater having integrally formed and/or integrally sintered electrodes comprises a honeycomb structure having a desired honeycomb configuration, and electrodes which are integrally sintered with the honeycomb structure at predetermined positions thereon. The honeycomb heater having integrally sintered is manufactured by joining or contacting the electrode-like formed bodies to the formed honeycomb body, and then by sintering the formed honeycomb body with the electrode-like formed bodies attached or contacted thereto. The electrodes are made of the same material as that of the honeycomb body, or of a material having an electric resistance lower than that of the material comprising the honeycomb body. Alternatively, the honeycomb heater having integrally formed and integrally sintered electrodes is manufactured by preparing an extrusion of a honeycomb body as one body which has a honeycomb configuration and an electrode-like shape at predetermined positions thereon, and then sintering that formed honeycomb body.
摘要:
In a catalytic converter operating method according to the present invention, a heater is energized at a predetermined power level or above and thereby heated substantially concurrently with the operation of an engine. During the heating, an oxidizing gas is introduced into the catalytic converter. When the temperature of the heater exceeds a value at which a main catalyst of the catalytic converter or a light-off catalyst carried on the heater functions, the power level is reduced by an output adjuster and supply of the oxidizing gas is suspended.
摘要:
A resistance adjusting type heater has a honeycomb structure having a large number of passages, at least two electrodes to enable electrical heating of the honeycomb structure provided on the honeycomb structure, and a resistance adjusting means, a slit, provided between the electrodes. The thicknesses of passage walls at the portions of the honeycomb structure at which electricity flows at a very high density are increased with a conductive material to prevent the abnormal heat generation at the portions of the honeycomb structure.
摘要:
A resistance adjusting type heater including a honeycomb structure having a large number of passages, at last two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism such as a slit provided between the electrodes to heat the gas flowing through the passages formed in the honeycomb structure. A catalytic converter includes a main monolith catalyst and the above-described heater placed adjacent to and upstream of the main monolith catalyst. A catalytic converter includes a honeycomb structure having a large number of passages, a catalyst carried on the honeycomb structure, at least two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism provided between the electrodes. A catalytic converter includes a main monolith catalyst, and a heater placed adjacent to and upstream of the main monolith catalyst. The heater includes a honeycomb structure having a large number of passages, a catalyst carried on the honeycomb structure, at least two electrodes for energizing the honeycomb structure, and a resistance adjusting mechanism provided between the electrodes.