摘要:
A method of generating in particular EUV radiation (12) and/or soft X-ray radiation (12a) emitted by a plasma (26) is described. The plasma (26) is formed by an operating gas (22) in a discharge space (14) which comprises at least one radiation emission window (16) and an electrode system with at least one anode (18) and at least one cathode (20). This electrode system transmits electrical energy to the plasma (26) by means of charge carriers (24) introduced into the discharge space (14). It is suggested for obtaining a reliable ignition of the plasma (26) at high repetition frequencies that a radiation (30) generated by at least one radiation source (28) is introduced into the discharge space (14) for making available the discharge carriers (24).
摘要:
A method of generating in particular EUV radiation (12) and/or soft X-ray radiation (12a) emitted by a plasma (26) is described. The plasma (26) is formed by an operating gas (22) in a discharge space (14) which comprises at least one radiation emission window (16) and an electrode system with at least one anode (18) and at least one cathode (20). This electrode system transmits electrical energy to the plasma (26) by means of charge carriers (24) introduced into the discharge space (14). It is suggested for obtaining a reliable ignition of the plasma (26) at high repetition frequencies that a radiation (30) generated by at least one radiation source (28) is introduced into the discharge space (14) for making available the discharge carriers (24).
摘要:
In a method for generating extreme ultraviolet radiation or soft x-ray radiation by means of gas discharge, in particular, for EUV lithography, a discharge vessel is provided with two electrodes that are connected to high voltage. Between the electrodes, in an area of two electrode recesses that are coaxial to one another, a gas fill with predetermined gas pressure in accordance with a discharge operation realized on the left branch of the Paschen curve is provided. In this area, a plasma emitting the radiation is generated when supplying energy. The plasma is displaced or deformed by a pressure change of the gas fill in the area of the electrode recesses.
摘要:
In a method for generating extreme ultraviolet radiation or soft x-ray radiation by means of gas discharge, in particular, for EUV lithography, a discharge vessel is provided with two electrodes that are connected to high voltage. Between the electrodes, in an area of two electrode recesses that are coaxial to one another, a gas fill with predetermined gas pressure in accordance with a discharge operation realized on the left branch of the Paschen curve is provided. In this area, a plasma emitting the radiation is generated when supplying energy. The plasma is displaced or deformed by a pressure change of the gas fill in the area of the electrode recesses.
摘要:
The invention relates to a device for generating extreme ultraviolet and soft x-rays from a gas discharge, operated on the left-hand branch of the Paschen curve. There are two main electrodes, between which there is a gas-filled space, and each main electrode exhibits an opening, by means of which an axis of symmetry [(5)] is defined; and there are means to increase the conversion efficiency. Preferred fields of application are those requiring extreme ultraviolet (EUV) radiation or soft x-rays at a wavelength ranging from approximately 1 to 20 nm, and in particular around 13 nm, such as in EUV lithography.
摘要:
In various embodiments, a UV luminaire may include a housing which is designed for accommodating a plurality of UV lamps and a protective atmosphere, wherein the housing is subdivided in such a manner into chambers respectively containing some of the UV lamps and can be opened in such a manner that each of the UV lamps can be replaced with detriment to the protective atmosphere only of the respective chamber.
摘要:
A dielectric barrier discharge lamp (1) configured as a coaxial double tube comprises an inner tube (3), which is disposed coaxially inside an outer tube (2). The inner tube (3) comprises an inner electrode tube (8) provided for receiving the inner electrode (7) and a getter tube (10) provided for receiving getter material (9). The inner electrode tube (8) and getter tube (10) are separated from each other in a gastight manner by a partition (11).
摘要:
A dielectric barrier discharge lamp (1) with a discharge vessel, which has an outer tube (2), which surrounds a discharge space (4) filled with a discharge medium, an outer electrode (6), which is arranged on the outer side of the outer tube (2), an elongate inner electrode (7), which is arranged axially within the outer tube (2), at least one retaining disk (8) with an axial bore, through which the elongate inner electrode (7) runs, the retaining disk (8) extending substantially from the inner electrode (7) up to the inner side of the outer tube (2), as a result of which the inner electrode (7) is centered at least indirectly within the discharge vessel. The retaining disk (8) is supported on both sides loosely in the direction of the longitudinal axis by means of a supporting means (9a-9c) on the left-hand side and a supporting means (10a-10c) on the right-hand side.
摘要:
The invention relates to a dielectric barrier discharge lamp in a coaxial double-tube arrangement, comprising an exterior electrode (6), and interior electrode (7), and an auxiliary electrode (8). The interior electrode (7) is designed as an electrically conductive layer placed inside the interior tube (3) of the double-tube arrangement. The auxiliary electrode (8) is designed, for example, as a metal tube or pipe and is also disposed inside the interior tube (3), specifically in direct contact with the layer. In this manner, the conductivity of the interior electrode (S) is improved.
摘要:
A dielectric barrier discharge lamp (1) with a discharge vessel, which has an outer tube (2), which surrounds a discharge space (4) filled with a discharge medium, an outer electrode (6), which is arranged on the outer side of the outer tube (2), an elongate inner electrode (7), which is arranged axially within the outer tube (2), at least one retaining disk (8) with an axial bore, through which the elongate inner electrode (7) runs, the retaining disk (8) extending substantially from the inner electrode (7) up to the inner side of the outer tube (2), as a result of which the inner electrode (7) is centered at least indirectly within the discharge vessel. The retaining disk (8) is supported on both sides loosely in the direction of the longitudinal axis by means of a supporting means (9a-9c) on the left-hand side and a supporting means (10a-10c) on the right-hand side.