Abstract:
Disclosed is an optical fiber arrangement for inducing coupling among propagation modes of light, said arrangement comprising a multimode optical fiber (30) having an input end (32) for receiving light and an output end (31) for emitting light, with a coupling inducing section (33) extending from said input end to said output end, and a holder (80) on which the optical fiber is arranged, wherein said multimode optical fiber has a non-circular cross section. Disclosed also is a system for measuring the absorption or determining the concentration of a substance, said system comprising at least one optical fiber arrangement.
Abstract:
The present invention relates to a flow cell (10) comprising a fluid inlet (16) and a fluid outlet (18) separated by a sample flow-through chamber (12) comprising at least one UV-transparent window (22′), wherein the at least one UV-transparent window (22′) is made of a polymer material and has been subjected to Gamma radiation sterilisation. In one aspect, the flow cell is combustible.
Abstract:
The present invention relates to a flow cell (10) comprising a fluid inlet (16) and a fluid outlet (18) separated by a sample flow-through chamber (12) comprising at least one UV-transparent window (22′), wherein the at least one UV-transparent window (22′) is made of a polymer material and has been subjected to Gamma radiation sterilization. In one aspect, the flow cell is combustible.
Abstract:
Disclosed is an apparatus for measuring the absorbance of a substance in a solution, comprising: i) a sample cell (30) of known path length (b) for containing said solution (S), said cell being transparent to light of a predefined wavelength spectrum; ii) plural LED's each being independently operable by means of a controller (25) each for emitting light, within said predefined wavelength spectrum, along a light path; iii) a band pass filter (22) in the light path; iv) a beam splitter (24) for dividing light from said source propagating along the path into a first portion and a second portion, said first portion being directable by the beam splitter toward a reference detector (42) and said second portion being directable into the cell (30); v) a reference detector (42) for detecting the intensity of said first portion of light directed by said beam splitter; and vi) a sample detector (40) for detecting the intensity of the second portion propagating from the cell; the apparatus allowing a sample in the cell to be inexpensively subjected to more than one wavelength of light for quicker or more accurate analysis.
Abstract:
The invention relates to an optical flow cell comprising a housing forming an enclosed and elongated fluid channel arranged along a first axis, an inlet arranged to connect a first outer surface area of the housing to a first end of the fluid channel and an outlet arranged to connect a second outer surface area to a second end of the fluid channel, a first light guide and a second light guide concentrically arranged along a second axis and on opposite side walls of the fluid channel. The invention further relates to a corresponding method to produce an optical flow cell.
Abstract:
The present invention relates to an optical flow cell (1) for a measuring device, having an input light guide with a light exit surface, an output light guide with a light entrance surface, said input light guide and output light guide being integrated with a holder (30) to form optical flow cell (1), and wherein the holder (30) extends along a first axis (A) and has a through hole (31) for receiving a flow of a sample fluid, said through hole (31) being transversal to said first axis (A), and the input light guide and output light guide further are arranged in said holder (30) so that the light exit surface and the light entrance surface extend into said through hole (31) and are arranged to be in optical alignment with each other and at a first distance from each other. The invention also relates to a measuring device having at least one optical flow cell (1).
Abstract:
The present invention relates to a method for determining operational status of a chromatography column (1; 39, 47, 59; 107, 109, 111, 113), comprising detecting a feed signal (21; 201) representative of the composition of a feed material provided to the inlet of the column; detecting the UV absorbance in the feed material, detecting an effluent signal (23; 203, 205, 207, 209) representative of the composition of the effluent from the column; and using the feed signal and the effluent signal to determine operational status of the column. The feed signal is generated using a first UV detector having a first UV cell pathlength operating at a first UV wavelength and in the effluent signal is generated using a second UV detector having a second UV cell pathlength operating at a second UV wavelength. The method further comprising determining a first threshold value based on the detected UV absorbance in the feed material, and selecting the first UV cell pathlength and/or first UV wavelength based on the first threshold value.
Abstract:
An optical measuring device (1; 1′; 1″; 41; 61) configured for being connected in a flow path, said optical measuring device (1; 1′; 1″; 41; 61) comprising:—a first and a second flow path connector (5, 7; 5′, 7′; 5″, 7″);—at least one flow cell part (3; 3a, 3b; 3a, 3b, 3c, 3d) provided in between the first and second flow path connectors (5, 7; 5′, 7′; 5″, 7″) such that a flow in a flow path in which the optical measuring device (1; 1′; 1″; 41; 61) can be arranged will flow through the first flow path connector (5; 5′; 5″), the at least one flow cell part (3; 3a, 3b; 3a, 3b, 3c, 3d) and through the second flow path connector (7; 7′; 7″); and—at least one releasable connection device (9) arranged for releasably connecting the at least one flow cell part (3; 3a, 3b; 3a, 3b, 3c, 3d) in between the first and second flow path connectors (5, 7; 5′, 7′; 5″, 7″).
Abstract:
The present invention relates to a flow cell (10) comprising a fluid inlet (16) and a fluid outlet (18) separated by a sample flow-through chamber (12) comprising at least one UV-transparent window (22′), wherein the at least one UV-transparent window (22′) is made of a polymer material and has been subjected to Gamma radiation sterilisation. In one aspect, the flow cell is combustible.
Abstract:
Disclosed is apparatus (1) for measuring fluorescence and absorbance of a substance in a sample, said apparatus (1) comprising: a flow cell (2) for containing a sample, a first light source (3), a first conductor (5) for transmitting light from the first light source (3) to the flow cell (2) for irradiating a sample contained therein, a second conductor (7) for transmitting light from the flow cell (2) to a sample detector (9) arranged to detect an electromagnetic radiation that has passed through said cell (2), and a processing unit (16) arranged to receive a first signal (31) from a reference detector (15) and a second signal (32) from the sample detector (9) and to determine an absorbance based on said first and second signals (31,32), said apparatus (1) further comprising a second light source (4), a third conductor (6) for transmitting light from the second light source (4) to the cell (2) and wherein the sample detector (9) is further arranged to also detect fluorescence signals in the light that has passed through the flow cell (2). The invention also relates to a method for measuring the absorbance and the fluorescence of a substance in a sample.