Abstract:
A modular substation (10) for subsea applications includes a plurality of modular DC/AC converters (32) configured for converting DC electrical power transmitted along a DC transmission link (24) into AC electrical power for supplying to a plurality of subsea loads (56). The plurality of modular DC/AC converters (32) is configured to couple in series to the DC transmission link (24) and couple in parallel to an AC distribution network (52). At least a first modular DC/AC converter (32) is configured to be selectively electrically and mechanically disconnected from the DC transmission link (24) and the AC distribution network (52) to facilitate maintenance of the first modular DC/AC converters (32) while the AC distribution network (52) continues to supply AC electrical power to at least one of the plurality of subsea loads (56). The modular substation (10) also comprises protection and bypass circuits (26) intended to isolate faulty DC/AC converters (32) and to facilitate safe maintenance and repair.
Abstract:
A method and system for a control power supply system is provided. The control power supply system includes a first conductor configured to carry a direct current (DC) electrical current from a source to a load, a second conductor configured to carry the DC electrical current from the load to the source, and an AC power source coupled to at least one of the first and the second conductors, the AC power source configured to superimpose a selectable relatively high frequency AC component onto the DC electrical current to generate a composite power signal.
Abstract:
A power system for offshore application includes a plurality of power circuits. Each of the power circuit includes an alternating current (AC) bus which supplies power to an auxiliary load and is connected to a generator. The power circuit further includes a first direct current (DC) bus having a first DC voltage supplying power to a first load and a second DC bus having a second DC voltage supplying power to a second load. The power circuit also includes a first DC to DC converter coupled between the first DC bus and the second DC bus, wherein the first DC to DC converter is configured for bidirectional power flow and an AC to DC converter coupled between the AC bus and the first DC bus. The first DC bus of at least one power circuit is coupled to the second DC bus of at least another power circuit with a second DC to DC converter. The system also includes a controller configured to control the operation of the first DC to DC converter, second DC to DC converter and the AC to DC converter for regulating the first and second DC voltages. The controller is further configured to provide power to the second DC bus from the at least one AC to DC converter during a first operating state and from the first DC to DC converter during a second operating state.
Abstract:
A submersible power system includes at least one DC power source and at least one submersible power distribution system electrically coupled to the at least one DC power source. The at least one submersible power distribution system includes at least one receptacle configured to be exposed to an underwater environment. The at least one submersible power distribution system also includes a plurality of power conversion modules removably positioned within the at least one receptacle. Each power conversion module of the plurality of power conversion modules includes an enclosure configured to be exposed to the underwater environment. The at least one submersible power distribution system further includes at least one switchyard module selectably coupled to and uncoupled from the plurality of power conversion modules. The at least one switchyard module includes a plurality of switches configured to electrically bypass and isolate each power conversion module from the DC power source.
Abstract:
A power converter module including a voltage source current controlled power converter for providing unidirectional current having at least four output voltage levels is provided. The voltage source current controlled power converter includes an input terminal and an output terminal, and a first conductive path and a second conductive path is coupled in parallel to each other between the input terminal and the output terminal. Each of the conductive paths comprises at least one diode and at least one switch coupled in series to the respective conductive path. The at least one diode in the first conductive path are coupled closer to the input terminal and the at least one diode in the second conductive path are coupled closer to the output terminal. The voltage source current controlled power converter further includes at least two energy storage elements coupled between the first conductive path and the second conductive path.
Abstract:
A DC power transmission system is configured to generate an electric field including components substantially constant with respect to time and varying with time. The DC power transmission system includes an AC stage configured to receive AC electrical power. The AC stage includes a transformer including primary windings and secondary windings configured to be electromagnetically coupled to, and electrically isolated from, each other. The AC stage also includes an AC/AC converter having substantially no insulating features against the at least one substantially constant component of the electric field. The AC/AC converter is electrically coupled to the primary windings. The DC power transmission system also includes an AC/DC conversion stage positioned downstream of the AC stage. The AC/DC conversion stage includes an AC/DC rectifier configured to convert AC electrical power to DC electrical power without external control. The AC/DC rectifier is coupled to the secondary windings.
Abstract translation:直流电力传输系统被配置为产生包括相对于时间基本上恒定且随时间变化的分量的电场。 直流电力传输系统包括被配置为接收AC电力的AC级。 AC级包括变压器,其包括初级绕组和次级绕组,其被配置为电磁耦合到彼此并且彼此电隔离。 AC级还包括AC / AC转换器,其基本上没有与电场的至少一个基本恒定的分量相对的绝缘特性。 AC / AC转换器电耦合到初级绕组。 直流电力传输系统还包括位于AC级下游的AC / DC转换级。 AC / DC转换级包括AC / DC整流器,被配置为在没有外部控制的情况下将AC电力转换为DC电力。 AC / DC整流器耦合到次级绕组。
Abstract:
A power converter module including a voltage source current controlled power converter for providing unidirectional current having at least four output voltage levels is provided. The voltage source current controlled power converter includes an input terminal and an output terminal, and a first conductive path and a second conductive path is coupled in parallel to each other between the input terminal and the output terminal. Each of the conductive paths comprises at least one diode and at least one switch coupled in series to the respective conductive path. The at least one diode in the first conductive path are coupled closer to the input terminal and the at least one diode in the second conductive path are coupled closer to the output terminal. The voltage source current controlled power converter further includes at least two energy storage elements coupled between the first conductive path and the second conductive path.
Abstract:
A direct current (DC) power system includes a plurality of energy sources supplying power to a plurality of loads via a DC bus having at least one positive rail. The DC bus includes two DC bus subsections and a DC bus separator coupled between the two DC bus subsections. The DC bus separator includes a controllable switch with at least one of its terminals coupled with a terminal of an inductor to provide a current path between the two DC bus subsections during normal operation via the inductor. The controllable switch is switched off to break the current path when a fault on the positive rail is detected. Furthermore, the DC bus separator includes a diode connected in parallel to the inductor and arranged to provide a circulating current path to dissipate an inductor current in the inductor when the controllable switch is switched off.
Abstract:
A combined direct current DC power transmission and heating system is provided. The system includes a rectifier station configured to generate a DC link current. The system also includes a downstream converter station positioned remotely from the rectifier station. The downstream converter station is configured to generate power supplied to an electrical load using at least a portion of the DC link current. The system also includes a return conductor electrically coupled to the rectifier station and the downstream converter station. The return conductor is configured to transmit a return current from the downstream converter station to the rectifier station. The return conductor is also configured to generate heat from resistive losses induced by the return current; and conduct the heat generated by the return current to a fluid being transported from a proximity of the downstream converter station to a proximity of the rectifier station.
Abstract:
A direct current (DC) power system includes a plurality of energy sources supplying power to a plurality of loads and a common DC bus having at least one positive rail. The common DC bus is coupled between the plurality of energy sources and the plurality of loads. The common DC bus includes at least two DC bus subsections with DC power transfer capability therebetween and at least one DC bus separator coupled between the at least two DC bus subsections. The DC bus separator includes at least one positive rail controllable switching with at least one of its terminals coupled with at least one terminal of a positive rail inductor to provide a current path between the at least two DC bus subsections during normal operation via the positive rail inductor. The at least one positive rail controllable switch is controlled to be switched off to break the current path when a fault on the positive rail is detected. Furthermore, the DC bus separator includes at least one positive rail diode connected in parallel to the at least one positive rail inductor and arranged to provide a circulating current path to dissipate an inductor current in the at least one positive rail inductor when the at least one positive rail controllable switch is switched off.