Abstract:
An electronic system includes a rack assembly including a first rail and a second rail defining a first width therebetween and a chassis that supports electronic components and is insertable between the first rail and the second rail. The chassis includes a first side and a second side defining a second width therebetween that is less than the first width. The electronic system further includes a power connector coupled to the chassis and movable between a first position and a second position. The power connector and the second side define a third width when the power connector is in the first position. The power connector and the second side define a fourth width when the power connector is in the second position. The third width is greater than the first width and the fourth width is less than the first width.
Abstract:
A power conduit for charging a power storage device of a vehicle includes an output terminal and locking mechanism operatively disposable in one of an engaged and a disengaged position. The locking mechanism locks the output terminal to the vehicle when the locking mechanism is in the engaged position and unlocks the output terminal when in the disengaged position. The power conduit includes a controller including a memory device configured to store a plurality of computer-executable instructions and a processor coupled to the memory device. The instructions configure the processor to receive an identifier associated with one of the vehicle and a user of the vehicle, and generate and transmit an unlocking signal to cause the locking mechanism to be in the disengaged position upon one of a determination that the identifier was received and a determination that a predetermined charge state of the power storage device has been reached.
Abstract:
A power conversion assembly configured to be mounted to an equipment rack is provided. The power conversion assembly includes a housing including at least one input power path extending from proximate a top end of the power conversion assembly to proximate a bottom end of the power conversion assembly, the at least one input power path configured to conduct input power, at least one output tap configured to distribute output power, and at least one receptacle configured to receive a power module and connect the power module to the at least one input power path and the at least one output tap, the power module configured to generate the output power from the input power.
Abstract:
A power converter is provided that includes a detection circuit configured to determine a power source type based on at least one characteristic of power received from a power source. The detection circuit is also configured to determine an operating edge of the soft AC source by monitoring at least one parameter as the soft AC power source approaches a power limit, and assign an operating point to the soft AC power source based on the operating edge to increase power delivery of the soft AC power source.
Abstract:
A method for charging an electric vehicle includes steps of providing a charger station and providing an electric vehicle operable to navigate to a desired destination autonomously, the vehicle comprising a power receiver configured to mate with the charger station to provide charging to the electric vehicle. The method further includes steps of aligning, via autonomous operation of the electric vehicle, the charger station and the power receiver of the electric vehicle, so as mate the charger station and the power receiver, and initiating charging of the electric vehicle upon mating of the charger station and the power receiver.
Abstract:
A charging system for charging an electric vehicle comprises an inductor-inductor-capacitor (LLC) battery charger that includes an isolation transformer having a transformer primary and a transformer secondary, the transformer primary included in an inductive charger station of the charging system and the transformer secondary included in an inductive power receiver of the charging system, with the inductive power receiver positioned on the electric vehicle. The LLC battery charger also includes a magnetizing inductor circuit element and a leakage inductor circuit element integrated into the isolation transformer on the transformer primary. The isolation transformer is constructed such that the transformer primary and the transformer secondary are separable from one another, with a selective engaging and disengaging of the transformer primary and the transformer secondary based on movement of the inductive power receiver on the electric vehicle relative to the inductive charger station.
Abstract:
A charging system for charging an electric vehicle comprises an inductor-inductor-capacitor (LLC) battery charger that includes an isolation transformer having a transformer primary and a transformer secondary, the transformer primary included in an inductive charger station of the charging system and the transformer secondary included in an inductive power receiver of the charging system, with the inductive power receiver positioned on the electric vehicle. The LLC battery charger also includes a magnetizing inductor circuit element and a leakage inductor circuit element integrated into the isolation transformer on the transformer primary. The isolation transformer is constructed such that the transformer primary and the transformer secondary are separable from one another, with a selective engaging and disengaging of the transformer primary and the transformer secondary based on movement of the inductive power receiver on the electric vehicle relative to the inductive charger station.
Abstract:
A method for charging an electric vehicle includes steps of providing a charger station and providing an electric vehicle operable to navigate to a desired destination autonomously, the vehicle comprising a power receiver configured to mate with the charger station to provide charging to the electric vehicle. The method further includes steps of aligning, via autonomous operation of the electric vehicle, the charger station and the power receiver of the electric vehicle, so as mate the charger station and the power receiver, and initiating charging of the electric vehicle upon mating of the charger station and the power receiver.
Abstract:
A power conduit for charging a power storage device of a vehicle includes an output terminal and locking mechanism operatively disposable in one of an engaged and a disengaged position. The locking mechanism locks the output terminal to the vehicle when the locking mechanism is in the engaged position and unlocks the output terminal when in the disengaged position. The power conduit includes a controller including a memory device configured to store a plurality of computer-executable instructions and a processor coupled to the memory device. The instructions configure the processor to receive an identifier associated with one of the vehicle and a user of the vehicle, and generate and transmit an unlocking signal to cause the locking mechanism to be in the disengaged position upon one of a determination that the identifier was received and a determination that a predetermined charge state of the power storage device has been reached.