Abstract:
In one embodiment, an X-ray source is provided that includes one or more electron emitters configured to emit one or more electron beams and one or more source targets configured to receive the one or more electron beams emitted by the one or more electron emitters and, as a result of receiving the one or more electron beams, to emit X-rays. Each source target of the X-ray source includes a first layer having one or more first materials; and a second layer in thermal communication with the first layer and having one or more second materials. The first layer is positioned closer to the one or more emitters than the second layer, the first material has a higher overall thermal conductivity than the second layer, and the second layer produces the majority of the X-rays emitted by the source target.
Abstract:
An integrated circuit device including a die with a substrate with a first surface and a second surface opposite the first surface is provided. The die includes at least one circuit element positioned on the first surface. Formed on the second surface, is a wetting feature that includes an array of spaced-apart nanoscale structures and/or an array of spaced-apart microscale structures. The wetting feature also includes a wettability coating applied to at least a portion of the second surface. The integrated circuit device includes a spacer coupled to the die adjacent to the second surface. In addition, an injector plate is coupled to the spacer. The injector plate includes at least one microjet and at least one exit hole defined through the injector plate. The at least one exit hole is positioned adjacent to the at least one microjet.
Abstract:
In one embodiment, an X-ray source is provided that includes one or more electron emitters configured to emit one or more electron beams and one or more source targets configured to receive the one or more electron beams emitted by the one or more electron emitters and, as a result of receiving the one or more electron beams, to emit X-rays. Each source target of the X-ray source includes a first layer having one or more first materials; and a second layer in thermal communication with the first layer and having one or more second materials. The first layer is positioned closer to the one or more emitters than the second layer, the first material has a higher overall thermal conductivity than the second layer, and the second layer produces the majority of the X-rays emitted by the source target.
Abstract:
An integrated circuit device including a die with a substrate with a first surface and a second surface opposite the first surface is provided. The die includes at least one circuit element positioned on the first surface. Formed on the second surface, is a wetting feature that includes an array of spaced-apart nanoscale structures and/or an array of spaced-apart microscale structures. The wetting feature also includes a wettability coating applied to at least a portion of the second surface. The integrated circuit device includes a spacer coupled to the die adjacent to the second surface. In addition, an injector plate is coupled to the spacer. The injector plate includes at least one microjet and at least one exit hole defined through the injector plate. The at least one exit hole is positioned adjacent to the at least one microjet.
Abstract:
An article and method of assembling the article is disclosed. The method of assembling includes positioning a pre-fabricated thermal interface element between a heat source and a heat-sink. The pre-fabricated thermal interface element includes an indium substrate and a plurality of nanosprings disposed on the indium substrate.