Abstract:
Embodiments of the disclosure relate to X-ray imaging systems. In one embodiment, the X-ray imaging system features a target configured to receive a focused electron beam from an electron emitter and emit a line source X-ray beam as a result of receiving the focused electron beam; and a monochromator crystal configured to receive the line source X-ray beam from the target and diffract only a portion of the X-rays, wherein the portion of X-rays satisfies the Bragg diffraction condition for the monochromator crystal, and wherein the monochromator crystal is oriented relative to the target such that the portion of the X-rays from the target that satisfy the Bragg condition illuminate an entire length of a surface of the monochromator crystal.
Abstract:
In one embodiment, an X-ray source is provided that includes one or more electron emitters configured to emit one or more electron beams and one or more source targets configured to receive the one or more electron beams emitted by the one or more electron emitters and, as a result of receiving the one or more electron beams, to emit X-rays. Each source target of the X-ray source includes a first layer having one or more first materials; and a second layer in thermal communication with the first layer and having one or more second materials. The first layer is positioned closer to the one or more emitters than the second layer, the first material has a higher overall thermal conductivity than the second layer, and the second layer produces the majority of the X-rays emitted by the source target.
Abstract:
A radiation shielding system for an x-ray digital detector array includes a first radiation shield having a plurality of shielding pads and a plurality of interstices between the plurality of shielding pads, the plurality of shielding pads having a greater thickness than the thickness of the plurality of interstices. The plurality of shielding pads is configured to be positioned over active components of the x-ray digital detector array and the interstices are configured to be positioned over passive components of the x-ray digital detector array.
Abstract:
A measurement system includes a cable having a length, a light source, at least one detector, and at least one processor. The light source is operably coupled to the cable and is configured to transmit an optical signal to the cable. The at least one processor is operably coupled to the cable and configured to: receive a scattered signal from the cable responsive to the optical signal transmitted to the cable; map the scattered signal to the length of the cable; and de-convolve a spatial averaging effect of the scattered signal using a weighting profile corresponding to the light source and the cable to generate a distributed property profile defined along the length of the cable.
Abstract:
A well integrity inspection system configured to inspect a well structure including multiple concentric layers. The well integrity inspection system includes an inspection probe positioned in the well structure. The inspection probe includes a plurality of excitation assemblies for transmitting a plurality of radiation emissions into the well structure. The plurality of excitation assemblies includes at least a neutron excitation assembly and an X-ray excitation assembly. The inspection probe also includes a plurality of detection assemblies configured to receive a plurality of backscatter radiation returns from the well structure. The plurality of detection assemblies includes at least a neutron detection assembly and an X-ray detection assembly. The well integrity inspection system further including a processor operatively coupled to the inspection probe. The processor is configured to determine a well integrity parameter of the well structure based on at least one of the plurality of backscatter radiation returns.
Abstract:
A measurement system includes a cable having a length, a light source, at least one detector, and at least one processor. The light source is operably coupled to the cable and is configured to transmit an optical signal to the cable. The at least one processor is operably coupled to the cable and configured to: receive a scattered signal from the cable responsive to the optical signal transmitted to the cable; map the scattered signal to the length of the cable; and de-convolve a spatial averaging effect of the scattered signal using a weighting profile corresponding to the light source and the cable to generate a distributed property profile defined along the length of the cable.
Abstract:
A well integrity inspection system configured to inspect a well structure including multiple concentric layers. The well integrity inspection system includes an inspection probe positioned in the well structure. The inspection probe includes a plurality of excitation assemblies for transmitting a plurality of radiation emissions into the well structure. The plurality of excitation assemblies includes at least a neutron excitation assembly and an X-ray excitation assembly. The inspection probe also includes a plurality of detection assemblies configured to receive a plurality of backscatter radiation returns from the well structure. The plurality of detection assemblies includes at least a neutron detection assembly and an X-ray detection assembly. The well integrity inspection system further including a processor operatively coupled to the inspection probe. The processor is configured to determine a well integrity parameter of the well structure based on at least one of the plurality of backscatter radiation returns.
Abstract:
A radiation shielding system for an x-ray digital detector array includes a first radiation shield having a plurality of shielding pads and a plurality of interstices between the plurality of shielding pads, the plurality of shielding pads having a greater thickness than the thickness of the plurality of interstices. The plurality of shielding pads is configured to be positioned over active components of the x-ray digital detector array and the interstices are configured to be positioned over passive components of the x-ray digital detector array.
Abstract:
In one embodiment, an X-ray source is provided that includes one or more electron emitters configured to emit one or more electron beams and one or more source targets configured to receive the one or more electron beams emitted by the one or more electron emitters and, as a result of receiving the one or more electron beams, to emit X-rays. Each source target of the X-ray source includes a first layer having one or more first materials; and a second layer in thermal communication with the first layer and having one or more second materials. The first layer is positioned closer to the one or more emitters than the second layer, the first material has a higher overall thermal conductivity than the second layer, and the second layer produces the majority of the X-rays emitted by the source target.
Abstract:
Embodiments of the disclosure relate to X-ray imaging systems. In one embodiment, the X-ray imaging system features a target configured to receive a focused electron beam from an electron emitter and emit a line source X-ray beam as a result of receiving the focused electron beam; and a monochromator crystal configured to receive the line source X-ray beam from the target and diffract only a portion of the X-rays, wherein the portion of X-rays satisfies the Bragg diffraction condition for the monochromator crystal, and wherein the monochromator crystal is oriented relative to the target such that the portion of the X-rays from the target that satisfy the Bragg condition illuminate an entire length of a surface of the monochromator crystal.