Abstract:
A bioreactor is provided. The bioreactor is a multi-scalable bioreactor, which comprises a culture vessel for seeding and culturing cells by adding a cell-culture media, wherein the culture vessel comprises at least a side wall and a bottom surface, a specific heat transfer area and a specific gas transfer area; wherein the culture vessel is configured to accommodate the cell-culture media volume up to 10 liters, and wherein the specific heat transfer area and the specific gas transfer area are independent of cell-culture media volume. A kit for culturing cells in a large scale is also provided which further comprises disposable tubings, culture bag or combinations thereof. A method for culturing cells is also provided.
Abstract:
An ultrasound scan probe and support mechanism are provided for use in a multi-modality mammography imaging system, such as a combined tomosynthesis and ultrasound imaging system. In one embodiment, the ultrasound components may be positioned and configured so as not to interfere with the tomosynthesis imaging operation, such as to remain out of the X-ray beam path. Further, the ultrasound probe and associated components may be configured to as to move and scan the breast tissue under compression, such as under the compression provided by one or more paddles used in the tomosynthesis imaging operation.
Abstract:
A flow control system is provided for a horizontal well production system having a casing, a tube having an intake opening and disposed within the casing, and a gap formed between the casing and the tube. The flow control system includes a valve having an orifice, coupled to the tube and disposed proximate to the intake opening. The flow control system further includes an actuator coupled to the valve and configured to open the valve in response to a presence of a liquid in the gap, proximate to the intake opening, to permit flow of the liquid into the tube via the intake opening, and to close the valve in response to a presence of a gas in the gap, proximate to the intake opening, to prevent flow of the gas into the tube via the intake opening.
Abstract:
The present disclosure relates to the manufacture and use of a non-rigid breast compression paddle, such as a compression paddle having a mesh material forming the primary interface with patient tissue. In certain implementations, an automatic feedback driven approach may be used in conjunction with such a compression paddle for compressing breast tissue.
Abstract:
A bioreactor is provided. The bioreactor is a multi-scalable bioreactor, which comprises a culture vessel for seeding and culturing cells by adding a cell-culture media, wherein the culture vessel comprises at least a side wall and a bottom surface, a specific heat transfer area and a specific gas transfer area; wherein the culture vessel is configured to accommodate the cell-culture media volume upto 10 liters, and wherein the specific heat transfer area and the specific gas transfer area are independent of cell-culture media volume. A kit for culturing cells in a large scale is also provided which further comprises disposable tubings, culture bag or combinations thereof. A method for culturing cells is also provided.
Abstract:
A coupling device configured to form a sample access assembly is provided. The sample access assembly is configured to house a sample. The coupling device includes a heating component and a separating component. Further, the separating component is configured to separate portions of first and second containers that form first and second compartments of the sample access assembly. Moreover, the heating component is configured to heat at least a portion of the sample.
Abstract:
The present disclosure relates to the manufacture and use of a non-rigid breast compression paddle, such as a compression paddle having a mesh material forming the primary interface with patient tissue. In certain implementations, an automatic feedback driven approach may be used in conjunction with such a compression paddle for compressing breast tissue.
Abstract:
A bioreactor is provided. The bioreactor is a multi-scalable bioreactor, which comprises a culture vessel for seeding and culturing cells by adding a cell-culture media, wherein the culture vessel comprises at least a side wall and a bottom surface, a specific heat transfer area and a specific gas transfer area; wherein the culture vessel is configured to accommodate the cell-culture media volume up to 10 liters, and wherein the specific heat transfer area and the specific gas transfer area are independent of cell-culture media volume. A kit for culturing cells in a large scale is also provided which further comprises disposable tubings, culture bag or combinations thereof. A method for culturing cells is also provided.
Abstract:
A sampling assembly configured to be coupled to a sample source is provided. The sampling assembly is configured to facilitate aseptic sampling at one or more instances in time. The sampling assembly includes a first conduit having a first port and a second port, where the first port is configured to be coupled to the sample source, and where the second port is configured to be hermetically sealed. The sampling assembly further includes a plurality of sub-conduits having corresponding sub-ports, where each of the plurality of sub-conduits is operatively coupled to the first conduit at respective connection points, and where each of the sub-ports is in fluidic communication with the first conduit. Moreover, the sampling assembly includes a plurality of sampling kits, where each sampling kit of the plurality of sampling kits is operatively connected to a respective sub-port of a corresponding sub-conduit.
Abstract:
A bioreactor is provided. The bioreactor is a multi-scalable bioreactor, which comprises a culture vessel for seeding and culturing cells by adding a cell-culture media, wherein the culture vessel comprises at least a side wall and a bottom surface, a specific heat transfer area and a specific gas transfer area; wherein the culture vessel is configured to accommodate the cell-culture media volume up to 10 liters, and wherein the specific heat transfer area and the specific gas transfer area are independent of cell-culture media volume. A kit for culturing cells in a large scale is also provided which further comprises disposable tubings, culture bag or combinations thereof. A method for culturing cells is also provided.