Abstract:
A semiconductor structure is provided that includes a material stack including an epitaxially grown semiconductor layer on a base semiconductor layer, a dielectric layer on the epitaxially grown semiconductor layer, and an upper semiconductor layer present on the dielectric layer. A capacitor is present extending from the upper semiconductor layer through the dielectric layer into contact with the epitaxially grown semiconductor layer. The capacitor includes a node dielectric present on the sidewalls of the trench and an upper electrode filling at least a portion of the trench. A substrate contact is present in a contact trench extending from the upper semiconductor layer through the dielectric layer and the epitaxially semiconductor layer to a doped region of the base semiconductor layer. A substrate contact is also provided that contacts the base semiconductor layer through the sidewall of a trench. Methods for forming the above-described structures are also provided.
Abstract:
A method of forming a contact on a semiconductor device is disclosed. The method includes: forming a mask on the semiconductor device, the mask exposing at least one contact node disposed within a trench in a substrate of the semiconductor device; performing a first substrate contact etch on the semiconductor device, the first substrate contact etch recessing the exposed contact node within the trench;removing a set of node films disposed above the exposed contact node and on the sides of the trench; and forming a contact region within the trench above the exposed contact node, the contact region contacting the substrate.
Abstract:
A dielectric mandrel structure is formed on a single crystalline semiconductor layer. An amorphous semiconductor material layer is deposited on the physically exposed surfaces of the single crystalline semiconductor layer and surfaces of the mandrel structure. Optionally, the amorphous semiconductor material layer can be implanted with at least one different semiconductor material. Solid phase epitaxy is performed on the amorphous semiconductor material layer employing the single crystalline semiconductor layer as a seed layer, thereby forming an epitaxial semiconductor material layer with uniform thickness. Remaining portions of the epitaxial semiconductor material layer are single crystalline semiconductor fins and thickness of these fins are sublithographic. After removal of the dielectric mandrel structure, the single crystalline semiconductor fins can be employed to form a semiconductor device.
Abstract:
A deep trench capacitor structure including an SOI substrate comprising an SOI layer, a rare earth oxide layer, and a bulk substrate, the rare earth oxide layer is located below the SOI layer and above the bulk substrate, and the rare earth oxide layer insulates the SOI layer from the bulk substrate, and a deep trench capacitor extending from a top surface of the SOI layer, through the rare earth oxide layer, down to a location within the bulk substrate, the rare earth oxide layer contacts the deep trench capacitor at an interface between the rare earth oxide layer and the bulk substrate forming an incline away from the deep trench capacitor.
Abstract:
A semiconductor structure is provided that includes a material stack including an epitaxially grown semiconductor layer on a base semiconductor layer, a dielectric layer on the epitaxially grown semiconductor layer, and an upper semiconductor layer present on the dielectric layer. A capacitor is present extending from the upper semiconductor layer through the dielectric layer into contact with the epitaxially grown semiconductor layer. The capacitor includes a node dielectric present on the sidewalls of the trench and an upper electrode filling at least a portion of the trench. A substrate contact is present in a contact trench extending from the upper semiconductor layer through the dielectric layer and the epitaxially semiconductor layer to a doped region of the base semiconductor layer. A substrate contact is also provided that contacts the base semiconductor layer through the sidewall of a trench. Methods for forming the above-described structures are also provided.