Abstract:
A propulsion system for an electric vehicle includes a battery pack having at least one battery cell. A cooling system includes a cooling plate abutting the battery cell. A heat sink is in thermal communication with the cooling plate by at least one carbon fiber brush coupled to at least one of the cooling plate and the heat sink.
Abstract:
A propulsion system for an electric vehicle includes a battery pack having at least one battery cell. A cooling system includes a cooling plate abutting the battery cell. A heat sink is in thermal communication with the cooling plate by at least one carbon fiber brush coupled to at least one of the cooling plate and the heat sink.
Abstract:
Sealing assemblies may include a boss, a valve, a liner that defines a containment volume of a pressure vessel, and a support member adapted to cooperate with the liner and the valve. The support member may be formed from an anodized electrically conductive support material and generally has nonconductive surfaces in contact with the valve and the liner. Annular recesses having conductive surfaces are provided in the support member, and seals formed of conductive materials or having conductive surfaces are seated in the annular recesses. Thereby, when the valve is present in the sealing assembly, electric continuity between the valve and the liner is established through the electrically conductive surfaces of the seals, the electrically conductive surfaces of the annular recesses and the electrically conductive support material in the core of the anodized support member.
Abstract:
Sealing assemblies may include a boss, a valve, a liner that defines a containment volume of a pressure vessel, and a support member adapted to cooperate with the liner and the valve. The support member may be formed from an anodized electrically conductive support material and generally has nonconductive surfaces in contact with the valve and the liner. Annular recesses having conductive surfaces are provided in the support member, and seals formed of conductive materials or having conductive surfaces are seated in the annular recesses. Thereby, when the valve is present in the sealing assembly, electric continuity between the valve and the liner is established through the electrically conductive surfaces of the seals, the electrically conductive surfaces of the annular recesses and the electrically conductive support material in the core of the anodized support member.
Abstract:
Apparatus, methods and systems for inspecting and/or sensing defects in a thermal pressure relief device. The thermal pressure relief apparatus may comprise a bulb having a fluid therein. In some implementations, a sensor may be used to determine whether the fluid within the bulb exceeds a fill level threshold. Upon determining that the fluid is below the fill level threshold, an action may be taken. In some implementations, the action may comprise providing a notification.
Abstract:
A TPRD for a high pressure storage vessel including an integrated pressure sensor cooperative with an activation mechanism and a method of monitoring a TPRD for use in a fuel cell system. The TPRD comprises a release piston, moveable between an open and a closed position, which controls the flow of gas from a fuel storage vessel through a gas outlet port. The thermally activated activation mechanism comprises a gas-inlet chamber and a liquid-filled bulb having an air bubble. Upon activation, the release piston moves from the closed position to the open position. The integrated pressure sensor detects the pressure within the TPRD. A difference in pressure between that of the fluid within the fuel storage vessel and the pressure within the TPRD provides indicia of impaired movement of the release piston.
Abstract:
A cooling system for a battery cell includes at least one plate having at least one key, and a heat sink having at least one slot formed therein. The at least one key of the at least one plate is disposed in the at least one slot. The at least one plate and the heat sink form an interference fit joint securing the at least one plate to the heat sink.
Abstract:
A TPRD for a high pressure storage vessel including an integrated pressure sensor cooperative with an activation mechanism and a method of monitoring a TPRD for use in a fuel cell system. The TPRD comprises a release piston, moveable between an open and a closed position, which controls the flow of gas from a fuel storage vessel through a gas outlet port. The thermally activated activation mechanism comprises a gas-inlet chamber and a liquid-filled bulb having an air bubble. Upon activation, the release piston moves from the closed position to the open position. The integrated pressure sensor detects the pressure within the TPRD. A difference in pressure between that of the fluid within the fuel storage vessel and the pressure within the TPRD provides indicia of impaired movement of the release piston.
Abstract:
A back-up ring assembly for high pressure gas components includes a first ring having and a second ring. The first ring is split at a first location with a first split angle, while the second ring is split at a second location with a second split angle. The first ring is concentrically positioned adjacent the second ring with the first location being offset relative to the second location. The back-up ring assembly is positionable adjacent to an O-ring in a sealed coupling in a high pressure application.
Abstract:
A cooling system for a battery cell includes at least one plate having at least one key, and a heat sink having at least one slot formed therein. The at least one key of the at least one plate is disposed in the at least one slot. The at least one plate and the heat sink form an interference fit joint securing the at least one plate to the heat sink.