Abstract:
Methods and systems for estimating motion of a vehicle are provided. Radar data pertaining to one or more stationary objects in proximity to the vehicle are obtained via one or more radar units of the vehicle. The motion of the vehicle is estimating using the radar data via a processor of the vehicle.
Abstract:
Systems, processes, and techniques for calibrating an onboard sensor of a vehicle are presented here. The vehicle has a control system that is capable of performing at least some of the tasks related to the calibration procedure. An exemplary methodology collects vehicle status data and obtains navigation map data during operation of the vehicle. A current calibration factor is calculated for the onboard sensor, based on the collected vehicle status data and the obtained navigation map data. More specifically, the vehicle status and navigation map data can be used to determine when the current conditions are suitable for performing calibration. When the current conditions are satisfactory, the calibration factor is calculated. Thereafter, the onboard sensor can be calibrated in response to the current calibration factor.
Abstract:
A system according to the principles of the present disclosure includes a longitudinal acceleration estimation module, a vehicle longitudinal acceleration sensor, a road grade estimation module, and an actuator control module. The longitudinal acceleration estimation module estimates a longitudinal acceleration of a vehicle based on at least one of a transmission output speed and a wheel speed. The vehicle longitudinal acceleration sensor measures the longitudinal acceleration of the vehicle. The road grade estimation module estimates a grade of a road on which the vehicle is traveling based on the estimated longitudinal acceleration and the measured longitudinal acceleration. The actuator control module controls an actuator of the vehicle based on the estimated road grade.
Abstract:
A combined slip based driver command interpreter for a vehicle is provided which may be communicatively coupled to a steering wheel angle sensor, an acceleration pedal position sensor and a brake pedal position sensor, the combined slip based driver command interpreter including, but not limited to a memory configured to store a non-linear combined lateral slip model and a non-linear combined longitudinal slip model, and a processor, the processor configured to determine a driver's intended vehicle lateral velocity and a driver's intended vehicle yaw rate based upon the angle of the steering wheel, the position of the acceleration pedal, the position of the brake pedal, a longitudinal velocity of the vehicle, the non-linear combined lateral slip model and the non-linear combined longitudinal slip model.
Abstract:
Methods and systems are provided for controlling a vehicle. In one embodiment, a method includes: receiving, by a processor, data indicating at least one of a tire tread temperature and a force distribution on a tire; determining, by the processor, a vehicle reference value based on the data; and controlling, by the processor, at least one feature of the vehicle based on the vehicle reference value.