摘要:
A vehicle computing system having a computer processor in communication with a wireless transceiver, such that the wireless transceiver is capable of communication with a wireless communication device located remotely from the processor. The computer processor may be configured to receive input identifying at least one checksum value from one or more modules in the vehicle. The computer processor may transmit the at least one checksum value to a remote server through the wireless communication device. The remote server may compare the at least one checksum value to a predetermined value. Based on the compared results, the processor may receive one or more messages from the remote server to indicate whether the at least one checksum is equal to the predetermined value. The processor may generate one or more remedial actions if the at least one checksum is not equal to the predetermined value.
摘要:
A method for operating a data processing unit of a driver assistance system, the unit including main and slave computers. The main computer ascertains surroundings data from a surroundings detection system by using a processing specification. The slave computer operates a communication interface of the data processing unit, using a communication instruction. The method includes initializing, a first testing, a carrying out, a second testing and a forwarding. In initializing, the main computer, in response to a signal, is initialized by performing an initialization instruction on the main computer. In the first testing, the slave computer, in response to the signal, is initialized by performing a self-test instruction on the slave computer. In the carrying out, the communication instruction is performed on the slave computer to send and/or receive data via the communication interface, when the slave computer is tested and while the main computer is initialized. In the second testing, the main computer is tested by performing a test instruction on the slave computer, when the main computer is initialized. In the forwarding, the surroundings data are forwarded via the communication interface by performing the communication instruction on the slave computer, when the main computer is tested.
摘要:
A passive start system includes a brake system having a primary brake pedal switch associated with a brake pedal. The state of the primary brake pedal switch is monitored to achieve desired operation of the passive start system. The passive start system also includes a secondary brake pedal switch that is monitored to ensure that the state of the brake system is accurate, for example, if the primary brake pedal switch has malfunctioned. The passive start system monitors the primary brake pedal switch and/or the secondary brake system switch and starts the vehicle in response to a passive start signal when the brakes of the brake system are engaged.
摘要:
A method of servicing a hybrid system is disclosed wherein the hybrid system includes a detected fault. As a result of the detected fault the hybrid system has been disabled. The hybrid system includes a controller and a service detection interlock (SDI). The method steps include first powering up the controller and then assessing a special fault flag status. If a special fault flag is set, the next step is to check to see if the SDI is removed. If the SDI is removed then the special fault flag is cleared while the hybrid system remains disabled. The controller is then powered down with the key-off input and with the next key-on input, the hybrid system can be enabled.
摘要:
A method for testing a transmission of a vehicle, the transmission including a hydrostatic unit installed on the vehicle. The method includes calculating an actual value of a parameter which is indicative of the volumetric efficiency of the hydrostatic unit, in a working condition. The method also includes determining an expected value of the parameter in the working condition. The actual value is comparable with the expected value in order to evaluate how the hydrostatic unit is working.
摘要:
A vehicle computing system having a computer processor in communication with a wireless transceiver, such that the wireless transceiver is capable of communication with a wireless communication device located remotely from the processor. The computer processor may be configured to receive input identifying at least one checksum value from one or more modules in the vehicle. The computer processor may transmit the at least one checksum value to a remote server through the wireless communication device. The remote server may compare the at least one checksum value to a predetermined value. Based on the compared results, the processor may receive one or more messages from the remote server to indicate whether the at least one checksum is equal to the predetermined value. The processor may generate one or more remedial actions if the at least one checksum is not equal to the predetermined value.
摘要:
The invention involves a procedure for adaptive configuration recognition after the run-up of a control device with or without configuration storage, which performs an automatic and operator-assisted, optimal configuration of the operating software of a motor vehicle.In a first variant, a central control device, after its run-up, receives at the earliest possible time, as a rule after activation of the ignition, identifying information from other components connected directly or indirectly to the central control device by data link. Upon receipt of the identifying information of a component, the central control device assumes that this component is present. Otherwise it assumes that it is not present. An additional configuration memory area is envisioned in a second variant in which the central control device, after the first receipt of the identifying information of a component, stores either the information, the associated software parts, or the software configuration resulting from the total of the recognized components. In this way, the appropriate software configuration can be quickly made available upon the new start of the vehicle with an unchanged hardware configuration. Furthermore, the procedure facilitates a guarantee that no error reports will be generated about components that are not present.
摘要:
A method for ascertaining a type of a computing device of an apparatus of a motor vehicle. The computing device is designed to at least partially control at least one function of the apparatus. Access to at least one register of a memory device of the apparatus takes place. A type of the computing device is ascertained based on a result of the access.
摘要:
A vehicular control apparatus that functions more reliably is provided. A quasi-abnormality control circuit brings one of a clock signal, an internal watchdog signal, and an answer signal into a quasi-abnormal state when an ignition is switched on. A clock determining circuit, an internal watchdog signal determining circuit, and a Q&A watchdog circuit output determination signals, respectively. One of the determination signals corresponds to a monitoring target signal brought into the quasi-abnormal state and indicates an abnormality. A reset signal determining circuit receives the determination signals, and generates a reset signal in accordance with determination results in the determination signals. A quasi-abnormality control circuit switches the monitoring target signal to be brought into the quasi-abnormal state each time the ignition is switched on.
摘要:
A vehicular control apparatus that functions more reliably is provided. A quasi-abnormality control circuit brings one of a clock signal, an internal watchdog signal, and an answer signal into a quasi-abnormal state when an ignition is switched on. A clock determining circuit, an internal watchdog signal determining circuit, and a Q&A watchdog circuit output determination signals, respectively. One of the determination signals corresponds to a monitoring target signal brought into the quasi-abnormal state and indicates an abnormality. A reset signal determining circuit receives the determination signals, and generates a reset signal in accordance with determination results in the determination signals. A quasi-abnormality control circuit switches the monitoring target signal to be brought into the quasi-abnormal state each time the ignition is switched on.