Abstract:
A system and method for a cathode subsystem in a fuel cell system. The system includes a fuel cell stack, a cathode inlet line that provides cathode air to a fuel cell stack and a cathode exhaust line that exhausts a cathode exhaust gas out of the fuel cell stack. Also included is a backpressure valve in the cathode exhaust line that is located downstream of a drip rail of the cathode exhaust line, where the drip rail includes a protrusion that prevents condensed water from building up near the backpressure valve. The drip rail further includes a sump that collects drips of condensed water from the protrusion of the drip rail. The system also includes a drain below a water vapor transfer unit that includes an orifice that is in a portion of the drain that is within the cathode exhaust line.
Abstract:
System and methods for controlling and optimizing coolant system parameters in a fuel cell system to obtain a requested cabin temperature in a fuel cell vehicle are presented. A method for managing a temperature in a vehicle cabin may include receiving an indication relating to a desired vehicle cabin temperature and a plurality of measured operating parameters. Based on the measured operating parameters, a projected output temperature of a cabin heat exchanger may be estimated. A determination may be made that the projected output temperature of the cabin heat exchanger is less than the indication. Based on the determination a fuel cell coolant parameter may be adjusted.
Abstract:
A multi-function fuel delivery system and method of providing fuel delivery is provided that addresses space-related and cost related challenges as well as other challenges by combining a noise attenuating function, a hydrogen heating function, and a fuel supply rail capable of supplying hydrogen to multiple injectors within a single volume where a heat-transfer core utilizes an existing available internal volume of an attenuating volume or a fuel rail of a hydrogen supply manifold. A hydrogen fuel manifold, a hydrogen heat exchanger, and a fuel rail are housed in a single chamber such that a hydrogen fuel heating/cooling function, a hydrogen fuel noise/vibration attenuating function, providing the heat to the heat-transfer core, and providing the noise-attenuated H2 are performed in the single chamber.
Abstract:
A system and method for a cathode subsystem in a fuel cell system. The system includes a fuel cell stack, a cathode inlet line that provides cathode air to a fuel cell stack and a cathode exhaust line that exhausts a cathode exhaust gas out of the fuel cell stack. Also included is a backpressure valve in the cathode exhaust line that is located downstream of a drip rail of the cathode exhaust line, where the drip rail includes a protrusion that prevents condensed water from building up near the backpressure valve. The drip rail further includes a sump that collects drips of condensed water from the protrusion of the drip rail. The system also includes a drain below a water vapor transfer unit that includes an orifice that is in a portion of the drain that is within the cathode exhaust line.
Abstract:
A method for starting a cold or frozen fuel cell stack as efficiently and quickly as possible in a vehicle application is based upon a state of charge of a first power source such as a high voltage battery. Power flow between the first power source and fuel cell system is coordinated in conjunction with a specific load schedule and parallel control algorithms to minimize the start time required and optimize system warm-up.
Abstract:
A method for starting a cold or frozen fuel cell stack as efficiently and quickly as possible in a vehicle application is based upon a state of charge of a first power source such as a high voltage battery. Power flow between the first power source and fuel cell system is coordinated in conjunction with a specific load schedule and parallel control algorithms to minimize the start time required and optimize system warm-up.