Abstract:
A method for controlling a fuel cell system, capable of quickly detecting the pressure rise caused by a faulted open anode injector, reducing pressure in the fuel cell stack when the fault occurs, and taking remedial action to allow continued operation of the fuel cell stack, and militate against a walk-home incident.
Abstract:
A method for starting a cold or frozen fuel cell stack as efficiently and quickly as possible in a vehicle application is based upon a state of charge of a first power source such as a high voltage battery. Power flow between the first power source and fuel cell system is coordinated in conjunction with a specific load schedule and parallel control algorithms to minimize the start time required and optimize system warm-up.
Abstract:
A fuel cell system is provided that includes a fuel cell stack and an air compressor in communication with a cathode inlet, a hydrogen source in communication with an anode inlet, and a start-up battery adapted to power the air compressor. The start-up battery is at least one of a low-voltage battery and a high-voltage battery. A power conversion module is in electrical communication with the start-up battery and the air compressor. The power conversion module is adapted to boost a voltage of the start-up battery as desired and power the air compressor at start-up. A controller is in communication with the power conversion module and is adapted to set an air compressor speed based on an available electrical energy. An open-loop method of operating the fuel cell system at start-up is also provided, wherein an anode purge is scheduled based on the available electrical energy from the battery.
Abstract:
A method for controlling a fuel cell system, capable of quickly detecting the pressure rise caused by a faulted open anode injector, reducing pressure in the fuel cell stack when the fault occurs, and taking remedial action to allow continued operation of the fuel cell stack, and militate against a walk-home incident.
Abstract:
A method for starting a cold or frozen fuel cell stack as efficiently and quickly as possible in a vehicle application is based upon a state of charge of a first power source such as a high voltage battery. Power flow between the first power source and fuel cell system is coordinated in conjunction with a specific load schedule and parallel control algorithms to minimize the start time required and optimize system warm-up.
Abstract:
A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.