Abstract:
A method of operating a motor vehicle transmission includes measuring an operating temperature of the transmission, the transmission having at least seven torque transmitting mechanisms and at least three planetary gear sets, each planetary gear set having three gear members; determining if the transmission is in a park mode; determining if the operating temperature is below a predetermined threshold; if the operating temperature is below the predetermined threshold and the transmission is the park mode, implementing a shift delay mitigation process that includes engaging a fourth torque transmitting mechanism and a firth torque transmitting mechanism of the at least seven torque transmitting mechanisms so that they are locked to a ground to prevent a first gear member of the first planetary gear set from moving, which, in turn, prevents an input torque being transferred to a park pawl.
Abstract:
A method of regulating a clutch assembly that has a set of clutch plates and a clutch piston with a fluid seal in an automatic transmission that includes a hydraulic circuit is disclosed. The method includes commanding the hydraulic circuit via the controller to apply a first hydraulic force to the clutch piston to displace the clutch piston relative to the set of clutch plates in order to affect a shift between speed-ratios in the transmission. The method also includes determining a drag force of the fluid seal. The method also includes determining a velocity of the displaced clutch piston that results from the drag force of the fluid seal acting counter to the displacement of the clutch piston. The method additionally includes regulating the clutch assembly to compensate for the determined drag force of the fluid seal acting counter to the displacement of the clutch piston.
Abstract:
A vehicle transmission includes a plurality of oncoming clutches that are hydraulically-actuated. A controller is operatively connected to the plurality of oncoming clutches. An algorithm stored on and executable by the controller causes the controller to determine if at least one predefined coast condition is met and identify the plurality of oncoming clutches configured to be engageable during a downshift event from an initial gear ratio to respective other gear ratios. The initial gear ratio is greater than each of the respective other gear ratios. The algorithm causes the controller to generate a first pressure command to at least partially pressurize a first one of the oncoming clutches to a first staging pressure (PS1) if the at least one predefined coast condition is met prior to the downshift event. The first staging pressure (PS1) is defined as a first return spring pressure (PR1) minus a first variable correction factor (CF1).
Abstract:
A vehicle transmission includes a plurality of oncoming clutches that are hydraulically-actuated. A controller is operatively connected to the plurality of oncoming clutches. An algorithm stored on and executable by the controller causes the controller to determine if at least one predefined coast condition is met and identify the plurality of oncoming clutches configured to be engageable during a downshift event from an initial gear ratio to respective other gear ratios. The initial gear ratio is greater than each of the respective other gear ratios. The algorithm causes the controller to generate a first pressure command to at least partially pressurize a first one of the oncoming clutches to a first staging pressure (PS1) if the at least one predefined coast condition is met prior to the downshift event. The first staging pressure (PS1) is defined as a first return spring pressure (PR1) minus a first variable correction factor (CF1).
Abstract:
A method for controlling internal electronic range selection for an automatic transmission includes: confirming if a range change command has been ordered from a current transmission operating state; verifying expected performance from at least first and second mode valves and a park servo are present in the current transmission operating state prior to allowing a range change event; during the range change event: generating proactive commands including ordering a reduction in a hydraulic system pressure; and identifying if an unexpected event is detected; and following completion of the range change event confirming expected performance is obtained from at least the first and second mode valves and the park servo to achieve a driver intended state.
Abstract:
A method of operating a motor vehicle transmission includes measuring an operating temperature of the transmission, the transmission having at least seven torque transmitting mechanisms and at least three planetary gear sets, each planetary gear set having three gear members; determining if the transmission is in a park mode; determining if the operating temperature is below a predetermined threshold; if the operating temperature is below the predetermined threshold and the transmission is the park mode, implementing a shift delay mitigation process that includes engaging a fourth torque transmitting mechanism and a firth torque transmitting mechanism of the at least seven torque transmitting mechanisms so that they are locked to a ground to prevent a first gear member of the first planetary gear set from moving, which, in turn, prevents an input torque being transferred to a park pawl.
Abstract:
A system for determining when a selectable one-way clutch has mechanically released includes an update timer identifying if each of a converter model engine torque, a transmission input torque, and a torque converter slip are positive for a predetermined period of time. An SOWC slip value is calculated using an output signal from each of: at least one transmission internal speed sensor producing an output signal representative of a speed of an internal component of a transmission; and at least one transmission output speed sensor producing an output signal representative of a speed of an output of the transmission. An SOWC released signal is issued if either all of the measured converter model engine torque, the measured transmission input torque, and the measured torque converter slip are positive for at least the predetermined period of time, or the calculated SOWC slip value is greater than a predetermined threshold.
Abstract:
A method of regulating a clutch assembly that has a set of clutch plates and a clutch piston with a fluid seal in an automatic transmission that includes a hydraulic circuit is disclosed. The method includes commanding the hydraulic circuit via the controller to apply a first hydraulic force to the clutch piston to displace the clutch piston relative to the set of clutch plates in order to affect a shift between speed-ratios in the transmission. The method also includes determining a drag force of the fluid seal. The method also includes determining a velocity of the displaced clutch piston that results from the drag force of the fluid seal acting counter to the displacement of the clutch piston. The method additionally includes regulating the clutch assembly to compensate for the determined drag force of the fluid seal acting counter to the displacement of the clutch piston.
Abstract:
A control system for a transmission of a vehicle includes a first angular rotation module, a second angular rotation module, and a slip module. The first angular rotation module determines a first angular rotation of a first component of the transmission during a predetermined period based on a first signal generated by a first sensor. The second angular rotation module determines a second angular rotation of a second component of the vehicle during the predetermined period based on a second signal generated by a second sensor. The slip module selectively indicates that a clutch of the transmission is slipping based on the first angular rotation and the second angular rotation.
Abstract:
A method for controlling internal electronic range selection for an automatic transmission includes: confirming if a range change command has been ordered from a current transmission operating state; verifying expected performance from at least first and second mode valves and a park servo are present in the current transmission operating state prior to allowing a range change event; during the range change event: generating proactive commands including ordering a reduction in a hydraulic system pressure; and identifying if an unexpected event is detected; and following completion of the range change event confirming expected performance is obtained from at least the first and second mode valves and the park servo to achieve a driver intended state.