METHOD AND APPARATUS FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE

    公开(公告)号:US20200291906A1

    公开(公告)日:2020-09-17

    申请号:US16354690

    申请日:2019-03-15

    Abstract: An engine includes an air intake system, an exhaust system, a single-cylinder-sourced EGR system, an exhaust sensor that is disposed to monitor exhaust gas from the single one of the cylinders, and a diverter valve. A controller includes an instruction set that executable to determine operation of the engine in a fuel cut-off mode, discontinue fuel flow to the single one of the cylinders, divert exhaust gas from the single one of the cylinders to the air intake system, determine an airflow, temperature, and an equivalence ratio of the diverted exhaust gas from the single one of the cylinders, determine a mass flowrate of oxygen in the diverted exhaust gas, integrate the mass flowrate of oxygen in the diverted exhaust gas, and discontinue the diverting of the exhaust gas from the single one of the cylinders when the integrated mass flowrate of oxygen is greater than a threshold value.

    MULTI-STEP SLIDING CAM ACTUATORS FOR INTERNAL COMBUSTION ENGINE ASSEMBLY

    公开(公告)号:US20180100414A1

    公开(公告)日:2018-04-12

    申请号:US15291101

    申请日:2016-10-12

    Inventor: Robert J. Gallon

    Abstract: Disclosed are sliding cam actuators, methods for making and using such actuators, and motor vehicles with internal combustion engines employing sliding cam actuators. A sliding cam actuator is disclosed with two actuator pins projecting from an actuator housing. These pins move from retracted to extended positions and engage a shift barrel on a sliding camshaft. An actuator assembly moves each actuator pin to its extended position into engagement with the shift barrel to thereby slide the camshaft to a different location. An actuator shank is attached to the actuator housing and engaged with the actuator pins. Moving the first actuator pin to its extended position moves the actuator shank in one direction, which moves the second actuator pin towards its retracted position. Moving the second actuator pin to its extended position causes the actuator shank to move in another direction, which moves the first actuator pin towards its retracted position.

    Method and apparatus for controlling an internal combustion engine

    公开(公告)号:US10914273B2

    公开(公告)日:2021-02-09

    申请号:US16354690

    申请日:2019-03-15

    Abstract: An engine includes an air intake system, an exhaust system, a single-cylinder-sourced EGR system, an exhaust sensor that is disposed to monitor exhaust gas from the single one of the cylinders, and a diverter valve. A controller includes an instruction set that executable to determine operation of the engine in a fuel cut-off mode, discontinue fuel flow to the single one of the cylinders, divert exhaust gas from the single one of the cylinders to the air intake system, determine an airflow, temperature, and an equivalence ratio of the diverted exhaust gas from the single one of the cylinders, determine a mass flowrate of oxygen in the diverted exhaust gas, integrate the mass flowrate of oxygen in the diverted exhaust gas, and discontinue the diverting of the exhaust gas from the single one of the cylinders when the integrated mass flowrate of oxygen is greater than a threshold value.

    Multi-step sliding cam actuators for internal combustion engine assembly

    公开(公告)号:US10006323B2

    公开(公告)日:2018-06-26

    申请号:US15291101

    申请日:2016-10-12

    Inventor: Robert J. Gallon

    Abstract: Disclosed are sliding cam actuators, methods for making and using such actuators, and motor vehicles with internal combustion engines employing sliding cam actuators. A sliding cam actuator is disclosed with two actuator pins projecting from an actuator housing. These pins move from retracted to extended positions and engage a shift barrel on a sliding camshaft. An actuator assembly moves each actuator pin to its extended position into engagement with the shift barrel to thereby slide the camshaft to a different location. An actuator shank is attached to the actuator housing and engaged with the actuator pins. Moving the first actuator pin to its extended position moves the actuator shank in one direction, which moves the second actuator pin towards its retracted position. Moving the second actuator pin to its extended position causes the actuator shank to move in another direction, which moves the first actuator pin towards its retracted position.

Patent Agency Ranking