Abstract:
A vehicle system includes an avoid evasive steering (AES) module configured to automatically control the vehicle, and a control module. The control module is configured to detect whether a first threat is present in front of the vehicle, in response to detecting the first threat in front of the vehicle, determine a path of the vehicle for an AES maneuver to avoid the first threat, generate a threat region of interest lateral to the vehicle along the path of the vehicle for the AES maneuver, determine whether a second threat is present in the threat region of interest, and in response to determining that the second threat is present in the threat region of interest, prevent the AES module from initiating control of the vehicle according to the AES maneuver. Other example vehicle systems and methods for evasive steering control in vehicles are also disclosed.
Abstract:
An autonomous vehicle and a system and method of operating the autonomous vehicle. The system includes a sensor and a processor. The processor determines an effective observation area of the sensor, the effective observation area being affected by an extrinsic condition. The processor determines an available time for performing a lane change based on the effective observation area and performs the lane change based on the available time.
Abstract:
A control-module implemented method for controlling a powertrain system comprising an internal combustion engine, at least one electric machine, a high-voltage battery and an electro-mechanical transmission operative to transmit torque to a driveline includes monitoring a state of charge (SOC) of a high-voltage battery configured to provide stored electrical power to a first electric machine, a second electric machine and at least one auxiliary load. A trickle-charging event is enabled only when the SOC of the high-voltage battery is less than a first SOC threshold. The trickle-charging event activates the first clutch coupled to a first planetary gear set. The trickle-charging event further coordinates a torque capacity of the activated first clutch and a charging set of torque commands between the engine, the first electric machine and the second electric machine to establish a net zero output torque condition.
Abstract:
An autonomous vehicle and a system and method of operating the autonomous vehicle. The system includes a sensor and a processor. The processor determines an effective observation area of the sensor, the effective observation area being affected by an extrinsic condition. The processor determines an available time for performing a lane change based on the effective observation area and performs the lane change based on the available time.
Abstract:
A powertrain system includes an internal combustion engine having a crankshaft that fixedly couples to an input member of a multi-mode transmission including first and second torque machines. The transmission operates in one of a plurality of fixed-gear modes and variable modes through selective activation of first and second clutches. A control method includes, in response to a command to operate the multi-mode transmission in a fixed-gear mode, activating only the first clutch and commanding the engine to an OFF state. The first torque machine is controlled to generate a first torque output responsive to a drag torque that is offset by an engine reactive torque with the engine in the OFF state. The transmission operates in the fixed-gear mode by controlling the second torque machine to generate a second torque output responsive to an operator torque request and the first torque output of the first torque machine.
Abstract:
A method and apparatus that perform threat zone assessment in a host vehicle are provided. The method includes detecting a target vehicle in a nonadjacent lane with respect to the host vehicle, determining dimensions of the detected target vehicle, a type of the detected target vehicle, and geometry of a road on which the detected target vehicle and the host vehicle are traveling, calculating the threat zone based on the dimensions of the detected target vehicle, the type of the detected target vehicle, or the geometry of the road on which the detected target vehicle and the host vehicle are traveling, and controlling the host vehicle to avoid the calculated threat zone by accelerating the host vehicle, decelerating the host vehicle, or aborting a lane change by the host vehicle.
Abstract:
A powertrain system includes an internal combustion engine having a crankshaft that fixedly couples to an input member of a multi-mode transmission including first and second torque machines. The transmission operates in one of a plurality of fixed-gear modes and variable modes through selective activation of first and second clutches. A control method includes, in response to a command to operate the multi-mode transmission in a fixed-gear mode, activating only the first clutch and commanding the engine to an OFF state. The first torque machine is controlled to generate a first torque output responsive to a drag torque that is offset by an engine reactive torque with the engine in the OFF state. The transmission operates in the fixed-gear mode by controlling the second torque machine to generate a second torque output responsive to an operator torque request and the first torque output of the first torque machine.
Abstract:
A powertrain system includes an internal combustion engine, a first electric machine and an electro-mechanical transmission operative to transmit torque to a driveline. A method for controlling the powertrain system in the presence of a controlled neutral operation of the electro-mechanical transmission being selected includes monitoring vehicle speed, and only when the monitored vehicle speed is indicative of a low-speed zone restricting a transition from a current engine operating state.
Abstract:
Vehicles and related systems and methods are provided for controlling a vehicle in an autonomous operating mode. One method involves identifying an object in a potential incursion zone corresponding to a lane adjacent to a current lane of travel for the vehicle, determining an estimated time in zone associated with the object, and in response to determining the estimated time in zone is greater than a threshold, determining a longitudinal adjustment strategy to reduce the estimated time in zone associated with the object, determining an adjusted speed for the vehicle in accordance with the longitudinal adjustment strategy, determining a longitudinal trajectory for the vehicle within the current lane of travel based at least in part on the adjusted speed, and autonomously operating one or more actuators onboard the vehicle in accordance with the longitudinal trajectory.
Abstract:
A method of controlling a change in net axle torque on a vehicle comprises receiving a request for a desired net axle torque that is different than a current net axle torque, determining whether a lash zone exists between the current net axle torque and the desired net axle torque, determining a progression of constant rates of change of the front axle torque and a progression of constant rates of change of the rear axle torque that will result in a constant rate of change of the net axle torque from the current net axle torque to the desired net axle torque, and commanding the progression of constant rates of change of the front axle torque and the progression of constant rates of change of the rear axle torque if the lash zone exists between the current net axle torque and the desired net axle torque.