Abstract:
A powertrain system includes an internal combustion engine, a first electric machine and an electro-mechanical transmission operative to transmit torque to a driveline. A method for controlling the powertrain system in the presence of a controlled neutral operation of the electro-mechanical transmission being selected includes monitoring vehicle speed, and only when the monitored vehicle speed is indicative of a low-speed zone restricting a transition from a current engine operating state.
Abstract:
A powertrain system includes an internal combustion engine, at least one electric machine and an electro-mechanical transmission operative to transmit torque to a drive line. A method for controlling the powertrain system includes executing an engagement strategy of a one-way clutch device only having capacity in a first direction. The engagement strategy includes modeling a capacity of the one-way clutch device in accordance with a loading step change profile until a first capacity limit of the one-way clutch device is achieved. A continuous reactive load is applied to the one-way clutch device in the first direction to maintain engagement and inhibit lash of the one-way clutch device.
Abstract:
A method to monitor a torque transfer device configured to transfer torque within an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes executing a failure detection strategy in response to a detected slip condition of the torque transfer device. The failure detection strategy includes monitoring a magnitude of energy loss of the torque transfer device. A failure condition in the torque transfer device is detected when the magnitude of energy loss achieves a predetermined energy threshold.
Abstract:
A vehicle includes a motor-generator unit, an energy storage system, and a high-voltage load (such as an electric compressor and/or electric heater), all interconnected via a high-voltage bus. The motor-generator unit is configured to operate in a regenerative mode and a non-regenerative mode with respect to the high-voltage bus. A control module is configured to operate the load at a first power consumption level during the regenerative mode, and to operate the high-voltage load at a second power consumption level, less than the first power consumption level, during the non-regenerative mode.
Abstract:
A method and system for controlling the overall brake bias in a vehicle braking system having both frictional and regenerative braking devices. The method comprises receiving a brake bias command and determining a desired brake bias based on the brake bias command. The method further comprises changing the brake bias in the vehicle braking system to achieve the desired brake bias through the operation of one or more regenerative braking devices. The system comprises one or more regenerative braking devices, each configured to apply negative torque to one of a first axle or a second axle of the vehicle, and an electronic module, for example, an electronic brake control module (EBCM) that is configured to perform the above-described methodology.