摘要:
Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
摘要:
Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.
摘要:
Phosphoranimide-metal catalysts are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The hydrocarbon-soluble catalysts have a metal to anionic phosphoranimide ratio of 1:1, have no inactive bulk phase and no dative ancillary ligands, and are active for a range of commercially important reductive transformations. A method of synthesis of these catalysts by reduction of a precursor of these catalysts is also disclosed.
摘要:
Phosphoranimide-metal catalysts and their role in hydrogenation and hydrosilylation are disclosed. The catalysts comprise first row transition metals such as nickel, cobalt or iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1. This disclosure presents a process for catalytic hydrogenation and hydrosilylation of a range of unsaturated organic compounds under lower temperature and pressure conditions than conditions associated with industrial hydrogenation and hydrosilylation.
摘要:
Phosphoranimide-metal catalysts and their role in C—O bond hydrogenolysis and hydrodeoxygenation (HDO) are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze C—O bond hydrogenolyses of a range of oxygen-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodeoxygenation.
摘要:
Phosphoranimide-metal catalysts and their role in hydrodesulfurization are disclosed. The catalysts comprise of first row transition metals such as nickel, cobalt and iron. The catalysts have a metal to anionic phosphoranimide ratio of 1:1 and catalyze hydrodesulfurization of a range of sulfur-containing organic compounds under lower temperature and pressure conditions than those commonly used in industrial hydrodesulfurization.