摘要:
Systems and methods for depositing material onto a microfeature workpiece in a reaction chamber are disclosed herein. In one embodiment, the system includes a gas supply assembly having a first gas source, a first gas conduit coupled to the first gas source, a first valve assembly, a reaction chamber, and a gas distributor carried by the reaction chamber. The first valve assembly includes first and second valves that are in fluid communication with the first gas conduit. The first and second valves are configured in a parallel arrangement so that the first gas flows through the first valve and/or the second valve. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
This invention includes atomic layer deposition methods of depositing oxide comprising layers on substrates. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed to form a first species monolayer onto the substrate within the deposition chamber from a gaseous first precursor. The chemisorbed first species is contacted with a gaseous second precursor effective to react with the first species to form an oxide of a component of the first species monolayer. The contacting at least in part results from flowing O3 to the deposition chamber, with the O3 being at a temperature of at least 170° C. at a location where it is emitted into the deposition chamber. The chemisorbing and the contacting are successively repeated to form an oxide comprising layer on the substrate. Additional aspects and implementations are contemplated.
摘要:
This invention includes atomic layer deposition methods of depositing oxide comprising layers on substrates. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed to form a first species monolayer onto the substrate within the deposition chamber from a gaseous first precursor. The chemisorbed first species is contacted with a gaseous second precursor effective to react with the first species to form an oxide of a component of the first species monolayer. The contacting at least in part results from flowing O3 to the deposition chamber, with the O3 being at a temperature of at least 170° C. at a location where it is emitted into the deposition chamber. The chemisorbing and the contacting are successively repeated to form an oxide comprising layer on the substrate. Additional aspects and implementations are contemplated.
摘要:
This invention includes atomic layer deposition methods of depositing oxide comprising layers on substrates. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed to form a first species monolayer onto the substrate within the deposition chamber from a gaseous first precursor. The chemisorbed first species is contacted with a gaseous second precursor effective to react with the first species to form an oxide of a component of the first species monolayer. The contacting at least in part results from flowing O3 to the deposition chamber, with the O3 being at a temperature of at least 170° C. at a location where it is emitted into the deposition chamber. The chemisorbing and the contacting are successively repeated to form an oxide comprising layer on the substrate. Additional aspects and implementations are contemplated.
摘要:
Systems and methods for depositing material onto a microfeature workpiece in a reaction chamber are disclosed herein. In one embodiment, the system includes a gas supply assembly having a first gas source, a first gas conduit coupled to the first gas source, a first valve assembly, a reaction chamber, and a gas distributor carried by the reaction chamber. The first valve assembly includes first and second valves that are in fluid communication with the first gas conduit. The first and second valves are configured in a parallel arrangement so that the first gas flows through the first valve and/or the second valve. It is emphasized that this Abstract is provided to comply with the rules requiring an abstract. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Systems and methods for insitu post atomic layer deposition (ALD) destruction of active species are provided. ALD processes deposit multiple atomic layers on a substrate. Pre-cursor gases typically enter a reactor and react with the substrate resulting in a monolayer of atoms. After the remaining gas is purged from the reactor, a second pre-cursor gas enters the reactor and the process is repeated. The active species of some pre-cursor gases do not readily purge from the reactor, thus increasing purge time and decreasing throughput. A high-temperature surface placed in the reactor downstream from the substrate substantially destroys the active species insitu. Substantially destroying the active species allows the reactor to be readily purged, increasing throughput.
摘要:
In one embodiment, the system includes a gas supply assembly having a first gas source, a first gas conduit coupled to the first gas source, a first valve assembly, a reaction chamber, and a gas distributor carried by the reaction chamber. The first valve assembly includes first and second valves that are in fluid communication with the first gas conduit. The first and second valves are configured in a parallel arrangement so that the first gas flows through the first valve and/or the second valve.
摘要:
Systems and methods for insitu post atomic layer deposition (ALD) destruction of active species are provided. ALD processes deposit multiple atomic layers on a substrate. Pre-cursor gases typically enter a reactor and react with the substrate resulting in a monolayer of atoms. After the remaining gas is purged from the reactor, a second pre-cursor gas enters the reactor and the process is repeated. The active species of some pre-cursor gases do not readily purge from the reactor, thus increasing purge time and decreasing throughput. A high-temperature surface placed in the reactor downstream from the substrate substantially destroys the active species insitu. Substantially destroying the active species allows the reactor to be readily purged, increasing throughput.
摘要:
This invention includes atomic layer deposition methods of depositing oxide comprising layers on substrates. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed to form a first species monolayer onto the substrate within the deposition chamber from a gaseous first precursor. The chemisorbed first species is contacted with a gaseous second precursor effective to react with the first species to form an oxide of a component of the first species monolayer. The contacting at least in part results from flowing O3 to the deposition chamber, with the O3 being at a temperature of at least 170° C. at a location where it is emitted into the deposition chamber. The chemisorbing and the contacting are successively repeated to form an oxide comprising layer on the substrate. Additional aspects and implementations are contemplated.
摘要:
This invention includes atomic layer deposition methods of depositing oxide comprising layers on substrates. In one implementation, a substrate is positioned within a deposition chamber. A first species is chemisorbed to form a first species monolayer onto the substrate within the deposition chamber from a gaseous first precursor. The chemisorbed first species is contacted with a gaseous second precursor effective to react with the first species to form an oxide of a component of the first species monolayer. The contacting at least in part results from flowing O3 to the deposition chamber, with the O3 being at a temperature of at least 170° C. at a location where it is emitted into the deposition chamber. The chemisorbing and the contacting are successively repeated to form an oxide comprising layer on the substrate. Additional aspects and implementations are contemplated.