Abstract:
Apparatus and method for managing energy of a home or other structure are disclosed. An energy management system for a home network comprises a central device controller configured to communicate with energy consuming devices, energy generation devices and storage devices at a home. Power/energy measuring devices provide consumption measurements for the home and each device to the controller. A user interface has a client application configured to provide information to a user/consumer and to an energy provider/utility about energy consumption, energy generation and storage. An energy profile and a carbon footprint of an individual's home are generated along with recommendations for energy savings and/or possible addition of on site generation or energy storage.
Abstract:
The present subject matter relates to energy management. Home energy management (HEM) devices are directed from a central control system to modify energy usage among appliances/loads within individual homes to meet energy source demand limitations. The HEM devices may work in cooperation with a group of such devices as a unit to negotiate with the central control system and then individually to control energy usage for their separately controlled home appliances/loads to meet group negotiated aggregate energy usage modification, for example, usage reductions so as to minimized peak usage demands on the energy source.
Abstract:
Apparatus and method for managing energy of a home or other structure are disclosed. An energy management system for a home network comprises a central device controller configured to communicate with energy consuming devices, energy generation devices and storage devices at a home. Power/energy measuring devices provide consumption measurements for the home and each device to the controller. A user interface has a client application configured to provide information to a user/consumer and to an energy provider/utility about energy consumption, energy generation and storage. An energy profile and a carbon footprint of an individual's home are generated along with recommendations for energy savings and/or possible addition of on site generation or energy storage.
Abstract:
The present subject matter relates energy management systems and methodologies wherein control over local appliances is implemented to control stress on a local transformer to which a plurality of user locations may be connected. Some of the user locations are provided with home energy management (HEM) devices that control operation of certain appliance at their location based in part on constraints associated with the local transformer. The HEMs may negotiate among themselves how to meet the constraints of the local transformer and, in certain circumstances, take into consideration estimates of usage at user locations connected to the local transformer but that do not have their own HEM.
Abstract:
In one aspect, an icemaker for making ice in a fresh food compartment of a bottom mount refrigerator is provided. The refrigerator comprises a freezer compartment comprising a freezer door, and a fresh food compartment located over the freezer compartment and comprising a fresh food door. The fresh food door comprises an ice dispenser. An ice maker is located in the fresh food compartment, and the ice maker comprises an ice mold, and a thermoelectric device for moving heat from the ice mold. The mold is positioned so that ice from the mold can be dispensed by the ice dispenser in the fresh food door.
Abstract:
The present subject matter relates energy management systems and methodologies wherein control over local appliances is implemented to control stress on a local transformer to which a plurality of user locations may be connected. Some of the user locations are provided with home energy management (HEM) devices that control operation of certain appliance at their location based in part on constraints associated with the local transformer. The HEMs may negotiate among themselves how to meet the constraints of the local transformer and, in certain circumstances, take into consideration estimates of usage at user locations connected to the local transformer but that do not have their own HEM.