Abstract:
Disclosed are apparatus and methodology for providing a precision laser adjustable (e.g., trimmable) thin film capacitor array. A plurality of individual capacitors are formed on a common substrate and connected together in parallel by way of fusible links. The individual capacitors are provided as laddered capacitance value capacitors such that a plurality of lower valued capacitors corresponding to the lower steps of the ladder, and lesser numbers of capacitors, including a single capacitor, for successive steps of the ladder, are provided. Precision capacitance values can be achieved by either of fusing or ablating selected of the fusible links so as to remove the selected subcomponents from the parallel connection. In-situ live-trimming of selected fusible links may be performed after placement of the capacitor array on a hosting printed circuit board.
Abstract:
Disclosed are apparatus and methodology for providing a precision laser adjustable (e.g., trimmable) thin film capacitor array. A plurality of individual capacitors are formed on a common substrate and connected together in parallel by way of fusible links. The individual capacitors are provided as laddered capacitance value capacitors such that a plurality of lower valued capacitors corresponding to the lower steps of the ladder, and lesser numbers of capacitors, including a single capacitor, for successive steps of the ladder, are provided. Precision capacitance values can be achieved by either of fusing or ablating selected of the fusible links so as to remove the selected subcomponents from the parallel connection. In-situ live-trimming of selected fusible links may be performed after placement of the capacitor array on a hosting printed circuit board.
Abstract:
Disclosed is methodology and apparatus for producing a planar inductor having a high quality (Q) factor. The inductor is formed by providing a first, relatively wide coil turn, and at least a pair of relatively more narrow second coil turns, displaced in a different plane from that occupied by the first coil turn. The configuration of such coil turns produces a high value of mutual coupling among the coil turns, resulting in an inductor having a high quality (Q) factor.
Abstract:
Disclosed are apparatus and methodology for providing a precision laser adjustable (e.g., trimmable) thin film capacitor array. A plurality of individual capacitors are formed on a common substrate and connected together in parallel by way of fusible links. The individual capacitors are provided as laddered capacitance value capacitors such that a plurality of lower valued capacitors corresponding to the lower steps of the ladder, and lesser numbers of capacitors, including a single capacitor, for successive steps of the ladder, are provided. Precision capacitance values can be achieved by either of fusing or ablating selected of the fusible links so as to remove the selected subcomponents from the parallel connection. In-situ live-trimming of selected fusible links may be performed after placement of the capacitor array on a hosting printed circuit board.
Abstract:
A very small electronic device adapted for inverted mounting to a circuit board includes a multiplicity of capacitors and resistors built on a substrate. The capacitors and resistors are interconnected so as to provide multiple RC circuits in various circuit arrangements. The multiple layers of the device are covered by an encapsulate having openings to expose terminal pads of the RC circuits. The openings are filled with solder to produce the individual terminations of the device in a ball grid array (BGA). The device saves cost and/or board space in the manufacture of larger electronic equipment through the elimination of multiple discrete components. In addition, very low inductance is achieved due to the close proximity of the device to a circuit board on which it is mounted.
Abstract:
Surface mount components and related methods involve thin film circuits between first and second insulating substrates. The thin film circuits may include passive components, including resistors, capacitors, inductors, arrays of such components, networks, or filters of multiple passive components. Such thin film circuit(s) can be sandwiched between first and second insulating substrates with internal conductive pads which are exposed to the outside of the surface mount component and electrically connected to external terminations. External terminations may include at least one layer of conductive polymer. Optional shield layers may protect the surface mount components from signal interference. A cover substrate may be formed with a plurality of conductive elements that are designed to generally align with the conductive pads such that conductive element portions are exposed in groups along surfaces of a device.
Abstract:
Shaped integrated passive devices and corresponding methodologies relate to construction and mounting of shaped passive devices on substrates so as to provide both mechanical and electrical connection. Certain components and component assemblies are associated with the implementation of surface mountable devices. Specially shaped integrated passive device are capable of providing simplified mounting on and simultaneous connection to selected electrical pathways on a printed circuit board or other mounting substrate. Shaped, plated side filter devices have plated sides which provide both mounting and grounding/power coupling functions. Thin film filters may be constructed on silicon wafers, which are then diced from the top surface with an angular dicing saw to produce a shaped groove in the top surface. The groove may be v-shaped or other shape, and is then plated with a conductive material. Individual pieces are separated by grinding the back surface of the wafer down to where the grooves are intercepted. The plated grooves serve as ground or power connection points for the filter circuit. The metallized slopes of the plated grooves are used in securing the individual pieces to a mounting surface, by soldering or using conductive epoxy.
Abstract:
Disclosed are apparatus and methodology for providing a precision laser adjustable (e.g., trimmable) thin film capacitor array. A plurality of individual capacitors are formed on a common substrate and connected together in parallel by way of fusible links. The individual capacitors are provided as laddered capacitance value capacitors such that a plurality of lower valued capacitors corresponding to the lower steps of the ladder, and lesser numbers of capacitors, including a single capacitor, for successive steps of the ladder, are provided. Precision capacitance values can be achieved by either of fusing or ablating selected of the fusible links so as to remove the selected subcomponents from the parallel connection. In-situ live-trimming of selected fusible links may be performed after placement of the capacitor array on a hosting printed circuit board.
Abstract:
Surface mount components and related methods of manufacture involve one or more thin film circuits provided between first and second insulating substrates. The thin film circuits may include one or more passive components, including resistors, capacitors, inductors, arrays of one or more passive components, networks or filters of multiple passive components. Such thin film circuit(s) can be sandwiched between first and second insulating substrates with internal conductive pads being exposed between the substrates on end and/or side surfaces of the surface mount component. The exposed conductive pads are then electrically connected to external terminations. The external terminations may include a variety of different materials, including at least one layer of conductive polymer and may be formed as termination stripes, end caps or the like. Optional shield layers may also be provided on top and/or bottom device surfaces to protect the surface mount components from signal interference. For embodiments where one or more thin film circuits are provided between insulating base and cover substrates, such thin film circuit(s) can be formed with conductive pads that extend to and are initially exposed along one or more surfaces of the resultant component. The cover substrate is formed with a plurality of conductive elements (e.g., internal active electrodes, internal anchor electrodes and/or external anchor electrodes) that are designed to generally align with the conductive pads formed on the base substrate such that conductive element portions are exposed in groups along one or more peripheral surfaces of a device. External plated terminations are then formed directly to the exposed portions of the conductive elements.
Abstract:
Shaped integrated passive devices and corresponding methodologies relate to construction and mounting of shaped passive devices on substrates so as to provide both mechanical and electrical connection. Certain components and component assemblies are associated with the implementation of surface mountable devices. Specially shaped integrated passive device are capable of providing simplified mounting on and simultaneous connection to selected electrical pathways on a printed circuit board or other mounting substrate. Shaped, plated side filter devices have plated sides which provide both mounting and grounding/power coupling functions. Thin film filters may be constructed on silicon wafers, which are then diced from the top surface with an angular dicing saw to produce a shaped groove in the top surface. The groove may be v-shaped or other shape, and is then plated with a conductive material. Individual pieces are separated by grinding the back surface of the wafer down to where the grooves are intercepted. The plated grooves serve as ground or power connection points for the filter circuit. The metallized slopes of the plated grooves are used in securing the individual pieces to a mounting surface, by soldering or using conductive epoxy.