Abstract:
The present invention relates to a flexible hybrid substrate for a display and a method for manufacturing the same and, more specifically, to a flexible hybrid substrate for a display, which has a reduced occurrence of cracks, an improved level of flexibility, and can be used in a high-temperature process for manufacturing a display element, and a method for manufacturing the same. To this end, the present invention provides a flexible hybrid substrate for a display and a method for manufacturing the same, the flexible hybrid substrate for a display comprising: an ultra-thin plate glass; a first transparent thin film formed on one surface of the ultra-thin plate glass; and a second transparent thin film formed on the other surface of the ultra-thin plate glass, wherein the second transparent thin film includes a transparent conductive polymer.
Abstract:
A sputtering target for forming protective film according to the invention is used to form protective film on one surface or both surfaces of a Cu wiring film, and includes 8.0 to 11.0% by mass of Al, 3.0 to 5.0% by mass of Fe, 0.5 to 2.0% by mass of Ni and 0.5 to 2.0% by mass of Mn with a remainder of Cu and inevitable impurities. In addition, a laminated wiring film includes a Cu wiring film and protective film formed on one surface or both surfaces of the Cu wiring film, and the protective film is formed by using the above sputtering target.
Abstract:
A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
Abstract:
The present disclosure relates to a transparent substrate including: a resin pattern layer including a plurality of grooves respectively including side surfaces and a bottom surface; and, a conductive layer formed within the grooves, wherein a line width of the conductive layer is 0.1 μm to 3 μm and an average height of the conductive layer is 5% to 50% of a maximum depth of each of the grooves, and a manufacturing method thereof, such that simplicity in a manufacturing process and a consecutive process are enabled, manufacturing costs are inexpensive, and a transparent substrate having superior electrical conductivity and transparency characteristics is manufactured.
Abstract:
An electronic component module includes a substrate; at least one electronic component mounted on an electronic component mounting surface of the substrate; an insulating body covering the electronic component on the electronic component mounting surface of the substrate; and a metal film formed by sputtering, the metal film covering at least one exterior surface of the insulating body and at least one side surface of the substrate. The substrate has a recess portion formed on a periphery of the surface of the substrate that is opposite to the electronic component mounting surface, and the recess portion has a top surface parallel to the electronic component mounting surface and a side surface perpendicular to the top surface, and the metal film is extended to cover the top surface of the recess portion, without covering the side surface thereof. It obtains improved electromagnetic wave shielding effect and improved manufacturing efficiency.
Abstract:
A method of producing a non-planar conforming circuit on a non-planar surface includes creating a first set of conforming layers. The first set of conforming layers is created by applying an oxide dielectric layer to the surface, applying a conductive material layer to the oxide dielectric layer, applying a resist layer to the conductive material layer, patterning the resist layer according to a desired circuit layout, etching the surface to remove exposed conductive material, and stripping the resist layer. The process may be repeated to form multiple layers of conforming circuits with electrical connections between layers formed by blind microvias. The resulting set of conforming layers can be sealed.
Abstract:
A conductive element includes: a substrate having a first wavy surface, a second wavy surface, and a third wavy surface; a first layer provided on the first wavy surface; and a second layer formed on the second wavy surface. The first and second layers form a conductive pattern portion. The first, second, and third wavy surfaces satisfy the following relationship: 0≦(Am1/λm1)
Abstract:
Provided is a transparent conductive film including a transparent electrode layer composed of a patterned thin metal wire on at least one surface of a transparent film substrate. The line width of the wire is 5 μm or less. The wire includes a first metal layer and a second metal layer that is in contact with the first metal layer, in this order from a transparent film substrate side. Both of the first and second metal layers contain copper in an amount of 90% by weight or more. The total film thickness of the first and second metal layers is 150 to 1000 nm. The diffraction angle 2θ of the (111) plane of the second metal layer is less than 43.400° as measured using a CuKα ray as an X-ray source, and the first metal layer has crystal properties different from those of the second metal layer.
Abstract:
Methods and apparatuses are disclosed for fabricating a printed circuit board (PCB) having electromagnetic interference (EMI) shielding and also having reduced volume over conventional frame-and-shield approaches. Some embodiments include fabricating the PCB by mounting an integrated circuit to the PCB, outlining an area corresponding to the integrated circuit with a number of grounded vias, selectively applying an insulating layer over the PCB such that at least one of the grounded vias are exposed, and selectively applying a conductive layer over the PCB such that the conductive layer covers at least a portion of the integrated circuit and such that the conductive layer is coupled to the at least one of the grounded vias that are exposed.
Abstract:
A mounting device in which a conductive film that is not separated is formed on a resin substrate. Alloy thin films, which contain more than 50% by atom of Cu, 5% by atom or more and 30% by atom or less of Ni, and 3% by atom or more and 10% by atom or less of Al, are formed on a base consisting of a resin so as to be brought into contact with a surface of the base by sputtering. Conductive films consisting of copper are formed on surfaces of the alloy thin films so as to obtain a wiring film having a two-layer structure and a metal plug filled in a connection hole. The alloy thin films have high adhesion to a resin; and hence, the wiring film and the metal plug are not separated.