摘要:
A phase-shifted reticle with patterns proximate each other having inverted phases for the features and phase-shifting elements, and method of fabricating the reticle. Each of the patterns and inverted patterns are structurally identical with regard to the direction of phase shift, so that any focal shift due to phase error is in the same direction for all patterns. In a preferred embodiment, the structurally identical inverted reticle is used to form an array of closely spaced contact or via openings. For a first pattern on the reticle, the feature will be the 0.degree. phase and the phase-shifting rim surrounding that feature will be the 180.degree. phase. All patterns surrounding the first pattern have phase-shifting rims of the 0.degree. phase and features of the 180.degree. phase. In this way, each pattern can form below conventional resolution features in the resist. Additionally, there will not be exposure of the regions between the closely spaced features since radiation transmitted through the closely spaced phase-shifting rims of the two patterns is 180.degree. out of phase. Also, since each pattern is structurally identical, any focal shift due to phase error is in the same direction for all patterns, so that an acceptable depth of field is maintained for a substrate exposed with the reticle.
摘要:
A phase-shifted reticle with patterns proximate each other having inverted phases for the features and phase-shifting elements, and methods of fabricating the reticle. Each of the patterns and inverted patterns are structurally identical with regard to the direction of phase shift, so that any focal shift due to phase error is in the same direction for all patterns. In a preferred embodiment, the structurally identical inverted reticle is used to form an array of closely spaced contact or via openings. For a first pattern on the reticle, the feature will be the 0.degree. phase and the phase-shifting rim surrounding that feature will be the 180.degree. phase. All patterns surrounding the first pattern have phase-shifting rims of the 0.degree. phase and features of the 180.degree. phase. In this way, each pattern can form below conventional resolution features in the resist. Additionally, there will not be exposure of the regions between the closely spaced features since radiation transmitted through the closely spaced phase-shifting rims of the two patterns is 180.degree. out of phase. Also, since each pattern is structurally identical, any focal shift due to phase error is in the same direction for all patterns, so that an acceptable depth of field is maintained for a substrate exposed with the reticle.
摘要:
A phase-shifted reticle with patterns proximate each other having inverted phases for the features and phase-shifting elements, and methods of fabricating the reticle, are disclosed. In a preferred embodiment, the inverted reticle is used to form an array of closely spaced contact or via openings. For a first pattern on the reticle, the feature will be the 0.degree. phase and the phase-shifting rim surrounding that feature will be the 180.degree. phase. All patterns surrounding the first pattern have phase-shifting rims of the 0.degree. phase and features of the 180.degree. phase. In this way, each pattern can form below conventional resolution features in the resist. Additionally, there will not be exposure of the regions between the closely spaced features since radiation transmitted through the closely spaced phase-shifting rims of the two patterns is 180.degree. out of phase.
摘要:
Methods of forming a patterned layer using a reticle having a phase-shifting element and the reticles for making the patterns are disclosed. The methods of the present invention use a phase-shifting element to change the phase of the radiation exiting a reticle about 180.degree. out of phase compared to the radiation exiting the areas immediately adjacent to an edge of the phase-shifting element so that radiation from both areas near the edge destructively interfere with each other so as to cancel out one another thereby resulting in a substantially unexposed region on a semiconductor substrate. The present invention can be used to prevent exposing a large area by using a set of phase-shifting elements to form a grating or checkerboard area.
摘要:
A reticle and method of forming a patterned resist layer on a semiconductor substrate using the reticle is described. The substrate is coated with a resist layer. The resist layer is selectively exposed to a radiation wave having a wavelength that is transmitted through the reticle. The reticle includes at least one first, second, and third areas. The first area has a first transmittance. The second area is adjacent to the first area and has a second transmittance that is less than the first transmittance. The second area shifts radiation transmitted through the second area approximately 180.degree. out of phase relative to radiation transmitted through the first area. The third area is adjacent to the second area. The third area is substantially opaque to prevent virtually any transmission of radiation. The resist layer is developed to form the patterned resist layer including at least one resist layer opening and at least one resist element.
摘要:
A metrology pattern on a reticle comprising a phase-shifted feature and an additional phase-shifted feature and/or non phase-shifted feature is disclosed. The metrology pattern can be used to determine the target thickness for achieving 180.degree. phase difference, i.e., zero phase error on a phase-shifted reticle. A test reticle having several such metrology patterns, with several different phase-shifter thickness differences is used to produce a CD versus defocus data for each of the phase-shifter thickness differences by performing an exposure matrix or series of aerial images. The data can be used to determine a target thickness for zero phase error. The data can also be used to determine a correlation between focal shift, phase error, and shifter thickness. The metrology pattern can be placed on reticles used for the fabrication of semiconductor devices, for example, so that an exposure matrix can be performed, to determine any focal shift, which can then be related to phase error.
摘要:
A phase-shifted reticle with patterns proximate each other having inverted phases for the features and phase-shifting elements, and methods of fabricating the reticle, are disclosed. In a preferred embodiment, the inverted reticle is used to form an array of closely spaced contact or via openings. For a first pattern on the reticle, the feature will be the 0.degree. phase and the phase-shifting rim surrounding that feature will be the 180.degree. phase. All patterns surrounding the first pattern have phase-shifting rims of the 0.degree. phase and features of the 180.degree. phase. In this way, each pattern can form below conventional resolution features in the resist. Additionally, there will not be exposure of the regions between the closely spaced features since radiation transmitted through the closely spaced phase-shifting rims of the two patterns is 180.degree. out of phase.
摘要:
A method of transporting a reticle is disclosed. The reticle is placed in a reticle carrier that has an ionizer. Moreover, the reticle may be attached with a pellicle. The pellicle consists of a pellicle frame and a pellicle film stretched over the pellicle frame. The pellicle frame has included within an absorbent material.
摘要:
An attenuating phase metrology cell on a reticle comprising an attenuating feature and a binary feature. The metrology cell is used to determine amount of focal shift associated with the attenuating phase-shifting material. A dimension of an image of the attenuating feature is measured at a number of focal distances from the reticle. Thereafter a first relationship between the measurements of the attenuating feature and the focal distance is determined. A dimension of an aerial image of the binary feature is also measured at a number of focal distances from the reticle. The relationship between the measurements of the binary feature and focal distance is determined. An amount of focal shift is then determined based upon the first and second relationships. The attenuating metrology pattern can thus be included on an attenuating phase-shifting reticle, such that the focal shift of the attenuating phase-shifting reticle can be determined.
摘要:
A device layer layout methodology, and method and apparatus for patterning a photosensitive layer. Device features are placed on lines running in rows and/or columns during layout. The lines and/or columns are extracted from the database to produce a layout of the phase-edge phase shifting layer. The photosensitive layer may be exposed to a mask corresponding to this layout, to produce latent image of the rows and/or lines. The photosensitive layer is also exposed to the device layer layout to expose unwanted portions of the phase-edge layer. Methods of forming a variety of device features, including contact/via openings and contact/via plugs are disclosed.