摘要:
An electrophysiological sensor, weak electrical signal conditioning circuit and method for controlling the circuit as provided. The sensor includes rigid filiform conducting nanostructures connected to a conducting substrate and operable to penetrate an organic tissue. The circuit includes an instrumentation amplifier with an input connected to a first electrode in contact with a first area of a medium, and a second input; a voltage generating device connected to an electrode in contact with a second area of the medium for applying a continuous reference signal to it; a compensator, electrically insulated from the device, for compensating the direct current offsets of a weak electrical signal received by the first electrode, generating a signal with a reference voltage with a value which can be modified by a control system, and supplying it to the second input. A method is also provided for controlling the circuit.
摘要:
The method includes applying individual stimuli to different regions of a brain the application of specific stimulus signals to corresponding stimulation elements arranged adjacent to the regions of the brain. The method includes constructing one or more simplified models of the brain, or of one or more sectors of the brain, considering the brain or the sector thereof, as appropriate, as a non-linear coupled oscillating system, and includes determining the stimulus signals so that the latter are suitable for exciting one or more natural vibration modes of the non-linear coupled oscillating system. The system includes stimulation elements (E1, E2 . . . En) arranged adjacent to regions of a brain, and an electronic system in connection with the stimulation elements (E1, E2 . . . En) and intended for applying thereto corresponding stimulus signals and for determining same by applying the proposed method.
摘要:
The method includes applying individual stimuli to different regions of a brain the application of specific stimulus signals to corresponding stimulation elements arranged adjacent to the regions of the brain. The method includes constructing one or more simplified models of the brain, or of one or more sectors of the brain, considering the brain or the sector thereof, as appropriate, as a non-linear coupled oscillating system, and includes determining the stimulus signals so that the latter are suitable for exciting one or more natural vibration modes of the non-linear coupled oscillating system. The system includes stimulation elements (E1, E2 . . . En) arranged adjacent to regions of a brain, and an electronic system in connection with the stimulation elements (E1, E2 . . . En) and intended for applying thereto corresponding stimulus signals and for determining same by applying the proposed method.