Multilayer polymer light-emitting diodes for solid state lighting applications
    6.
    发明授权
    Multilayer polymer light-emitting diodes for solid state lighting applications 有权
    用于固态照明应用的多层聚合物发光二极管

    公开(公告)号:US08076842B2

    公开(公告)日:2011-12-13

    申请号:US11366186

    申请日:2006-03-01

    IPC分类号: H01L51/54 H01L51/56

    摘要: Multilayer polymer light-emitting diodes (PLEDs) are demonstrated using semiconducting polymers blended with organometallic emitters as the emissive layer and one or both of an electron transport layer and a hole transparent layer on the appropriate electron injection and hole injection sides of the emissive layer. The transport layers reduce energy potential gaps between the hole injection electrode and the emissive polymer and between the electron injection electrode and the emissive polymer. A solvent-processing based procedure for preparing these devices is also disclosed It uses nonpolar solvent-based solutions of emissive polymers to form the emissive layer and polar solvent-based solutions to form the transport layers to minimize etching and other undesirable interactions as the multiple layers are being laid down. Illumination quality white light can be obtained with stable Commission Internationale de l'Eclairage coordinates, stable color temperatures, and stable color rendering indices, all close to those of “pure” white light. These multilayer white light-emitting PLEDs are useful as backlights for liquid crystal displays and for solid state lighting applications.

    摘要翻译: 使用与有机金属发射体混合的半导体聚合物作为发射层和在发射层的合适的电子注入和空穴注入侧的电子传输层和空穴透明层中的一个或两个的多层聚合物发光二极管(PLED)。 传输层减少空穴注入电极和发射聚合物之间以及电子注入电极和发射聚合物之间的能量势隙。 还公开了用于制备这些装置的基于溶剂处理的方法。它使用发射聚合物的非极性溶剂型溶液形成发射层和极性溶剂型溶液以形成传输层,以使蚀刻和其它不希望的相互作用最小化,因为多层 正在放下 照明质量白光可以通过稳定的国际照明坐标,稳定的色温和稳定的显色指数获得,均接近于“纯”白光。 这些多层白色发光PLED可用作液晶显示器和固态照明应用的背光。

    Perovskite hybrid solar cells
    10.
    发明授权

    公开(公告)号:US10340458B2

    公开(公告)日:2019-07-02

    申请号:US15339501

    申请日:2016-10-31

    摘要: Perovskite hybrid solar cells utilize a bulk heterojunction (BHJ) active layer that is formed as a composite of an organometal halide perovskite and a water soluble fullerene, such as A10C60. In alternative embodiments, the BHJ active layer may be formed as a composite of an organometal halide perovskite material and a fullerene, such as PC61BM. Thus, the fullerene acts as an electron extraction acceptor within the BHJ, allowing such solar cells to more efficiently transport the electrons from the fullerene/perovskite interface to a fullerene-based electron transport layer (ETL). As a result, increased fill factor (FF), as well as improvements in the short-circuit current density (JSC) and power conversion efficiency (PCE) are achieved by the solar cells.