摘要:
A memory device comprising an optimization component that facilitates erasing memory cells in a substantially homogeneous electromagnetic field and methods that facilitate erasing memory cells in a substantially homogeneous electromagnetic field are presented. The optimization component facilitates selecting a subset of memory cells to be erased at the same time, such that a memory cell in the subset of memory cells has two neighbor memory cells adjacent thereto that are in the subset of memory, or one neighbor memory cell adjacent thereto when the memory cell is an end-row memory cell. The optimization component facilitates performing a Fowler-Nordheim channel erase to erase the subset of memory cells, and a predetermined voltage potential associated with an erase command is applied to each cell of the subset of memory cells to facilitate reducing fringing effect associated with the electromagnetic fields applied to the cells during the erase.
摘要:
A memory device comprising an optimization component that facilitates erasing memory cells in a substantially homogeneous electromagnetic field and methods that facilitate erasing memory cells in a substantially homogeneous electromagnetic field are presented. The optimization component facilitates selecting a subset of memory cells to be erased at the same time, such that a memory cell in the subset of memory cells has two neighbor memory cells adjacent thereto that are in the subset of memory, or one neighbor memory cell adjacent thereto when the memory cell is an end-row memory cell. The optimization component facilitates performing a Fowler-Nordheim channel erase to erase the subset of memory cells, and a predetermined voltage potential associated with an erase command is applied to each cell of the subset of memory cells to facilitate reducing fringing effect associated with the electromagnetic fields applied to the cells during the erase.
摘要:
A memory device comprising an optimization component that facilitates erasing memory cells in a substantially homogeneous electromagnetic field and methods that facilitate erasing memory cells in a substantially homogeneous electromagnetic field are presented. The optimization component facilitates selecting a subset of memory cells to be erased at the same time, such that a memory cell in the subset of memory cells has two neighbor memory cells adjacent thereto that are in the subset of memory, or one neighbor memory cell adjacent thereto when the memory cell is an end-row memory cell. The optimization component facilitates performing a Fowler-Nordheim channel erase to erase the subset of memory cells, and a predetermined voltage potential associated with an erase command is applied to each cell of the subset of memory cells to facilitate reducing fringing effect associated with the electromagnetic fields applied to the cells during the erase.
摘要:
A memory device comprising an optimization component that facilitates erasing memory cells in a substantially homogeneous electromagnetic field and methods that facilitate erasing memory cells in a substantially homogeneous electromagnetic field are presented. The optimization component facilitates selecting a subset of memory cells to be erased at the same time, such that a memory cell in the subset of memory cells has two neighbor memory cells adjacent thereto that are in the subset of memory, or one neighbor memory cell adjacent thereto when the memory cell is an end-row memory cell. The optimization component facilitates performing a Fowler-Nordheim channel erase to erase the subset of memory cells, and a predetermined voltage potential associated with an erase command is applied to each cell of the subset of memory cells to facilitate reducing fringing effect associated with the electromagnetic fields applied to the cells during the erase.
摘要:
Systems and methods that facilitate improved programming memory cells in a nonvolatile memory (e.g., flash memory) are presented. An optimized voltage component can facilitate supplying respective voltages to a source, drain, and gate associated with a memory cell during operations, such as programming operations. The optimized voltage component can facilitate supplying a predetermined source bitline voltage to a memory cell during programming of the cell to facilitate reducing leakage currents associated with the bitlines, which can improve programming of the memory cell, and to facilitate reducing the programming current, which can result in power efficient programming and improved programming speed.
摘要:
Systems and methods that facilitate improved programming memory cells in a nonvolatile memory (e.g., flash memory) are presented. An optimized voltage component can facilitate supplying respective voltages to a source, drain, and gate associated with a memory cell during operations, such as programming operations. The optimized voltage component can facilitate supplying a predetermined source bitline voltage to a memory cell during programming of the cell to facilitate reducing leakage currents associated with the bitlines, which can improve programming of the memory cell, and to facilitate reducing the programming current, which can result in power efficient programming and improved programming speed.
摘要:
Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift
摘要:
Providing for suppression of room temperature electronic drift in a flash memory cell is provided herein. For example, a soft program pulse can be applied to the flash memory cell immediately after an erase pulse. The soft program pulse can help to mitigate dipole effects caused by non-combined electrons and holes in the memory cell. Specifically, by utilizing a relatively low gate voltage, the soft program pulse can inject electrons into the flash memory cell proximate a distribution of uncombined holes associated with the erase pulse in order to facilitate rapid combination of such particles. Rapid combination in this manner reduces dipole effects caused by non-combined distributions of opposing charge within the memory cell, reducing room temperature program state drift.