摘要:
A semiconductor device includes a switching device disposed on a substrate. A buffer electrode pattern is disposed on the switching device. The buffer electrode pattern includes a first region having a first vertical thickness, and a second region having a second vertical thickness smaller than the first vertical thickness. A lower electrode pattern is disposed on the first region of the buffer electrode pattern. A trim insulating pattern is disposed on the second region of the buffer electrode pattern. A variable resistive pattern is disposed on the lower electrode pattern.
摘要:
A semiconductor device includes a switching device disposed on a substrate. A buffer electrode pattern is disposed on the switching device. The buffer electrode pattern includes a first region having a first vertical thickness, and a second region having a second vertical thickness smaller than the first vertical thickness. A lower electrode pattern is disposed on the first region of the buffer electrode pattern. A trim insulating pattern is disposed on the second region of the buffer electrode pattern. A variable resistive pattern is disposed on the lower electrode pattern.
摘要:
Provided is a non-volatile memory device including a bottom electrode disposed on a substrate and having a lower part and an upper part. A conductive spacer is disposed on a sidewall of the lower part of the bottom electrode. A nitride spacer is disposed on a top surface of the conductive spacer and a sidewall of the upper part of the bottom electrode. A resistance changeable element is disposed on the upper part of the bottom electrode and the nitride spacer. The upper part of the bottom electrode contains nitrogen (N).
摘要:
Provided is a non-volatile memory device including a bottom electrode disposed on a substrate and having a lower part and an upper part. A conductive spacer is disposed on a sidewall of the lower part of the bottom electrode. A nitride spacer is disposed on a top surface of the conductive spacer and a sidewall of the upper part of the bottom electrode. A resistance changeable element is disposed on the upper part of the bottom electrode and the nitride spacer. The upper part of the bottom electrode contains nitrogen (N).
摘要:
A method of manufacturing a nonvolatile memory device includes forming an insulating film pattern, which includes apertures, on a substrate, forming a switching element in each of the apertures, forming a bottom electrode on the switching element by using a silicon (Si)-doped titanium nitride (TiN) film, and forming a variable resistance material pattern on the bottom electrode. The Si-doped TiN film is formed by repeatedly forming a TiN film and doping the TiN film with Si.
摘要:
A stacked semiconductor device comprises a lower transistor formed on a semiconductor substrate, a lower interlevel insulation film formed on the semiconductor substrate over the lower transistor, an upper transistor formed on the lower interlayer insulation film over the lower transistor, and an upper interlevel insulation film formed on the lower interlevel insulation film over the upper transistor. The stacked semiconductor device further comprises a contact plug connected between a drain or source region of the lower transistor and a source or drain region of the upper transistor, and an extension layer connected to a lateral face of the source or drain region of the upper transistor to enlarge an area of contact between the source or drain region of the upper transistor and a side of the contact plug.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
Methods of forming metal silicide layers in a semiconductor device are provided in which a first metal silicide layer may be formed on a substrate, where the first metal silicide layer comprises a plurality of fragments of a metal silicide that are separated by one or more gaps. A conductive material is selectively deposited into at least some of the gaps in the first metal silicide layer in order to electrically connect at least some of the plurality of fragments.
摘要:
A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern. After removing portions of the single crystal semiconductor plug, a single crystal semiconductor layer may be formed on the interlayer insulating layer and on the single crystal semiconductor contact pattern. A second interlayer insulating layer may be formed on the single crystal semiconductor layer, and a common contact hole may be formed through the second interlayer insulating layer, through the single crystal semiconductor layer, and through the first interlayer insulating layer to expose a portion of semiconductor substrate. In addition, a conductive contact plug may be formed in the common contact hole in contact with the semiconductor substrate. Related devices are also discussed.
摘要:
Provided are exemplary methods for forming a semiconductor devices incorporating silicide layers formed at temperatures below about 700° C., such as nickel silicides, that are formed after completion of a silicide blocking layer (SBL). The formation of the SBL tends to deactivate dopant species in the gate, lightly-doped drain and/or source/drain regions. The exemplary methods include a post-SBL activation anneal either in place of or in addition to the traditional post-implant activation anneal. The use of the post-SBL anneal produces CMOS transistors having properties that reflect reactivation of sufficient dopant to overcome the SBL process effects, while allowing the use of lower temperature silicides, including nickel silicides and, in particular, nickel silicides incorporating a minor portion of an alloying metal, such as tantalum, the exhibits reduced agglomeration and improved temperature stability.