Abstract:
A laser machining device 1 comprises a laser light source 10, a spatial light modulator 20, a controller 22, a converging optical system 30, and a shielding member 40. The phase-modulating spatial light modulator 20 inputs a laser beam outputted from the laser light source 10, displays a hologram modulating a phase of the laser beam at each of a plurality of pixels arranged two-dimensionally, and outputs the phase-modulated laser beam. The controller 22 causes the spatial light modulator 20 to display a plurality of holograms sequentially, lets the converging optical system 30 converge the laser beam outputted from the spatial light modulator 20 at converging positions having a fixed number of M, selectively places N converging positions out of the M converging positions into a machining region 91, and machines an object to be machined 90.
Abstract:
In a waveform measurement method, first, initial pulsed light is spatially dispersed for respective wavelengths. Next, the initial pulsed light is input to a polarization dependent type SLM in a state where a polarization plane is inclined with respect to a modulation axis direction, and a phase spectrum of a first polarization component of the initial pulsed light along the modulation axis direction is modulated, to cause a time difference between first pulsed light Lp1 including the first polarization component and second pulsed light Lp2 including a second polarization component orthogonal to the first polarization component. After combining the wavelength components, an object is irradiated with the pulsed light Lp1 and the pulsed light Lp2, and light generated in the object is detected. The above detection operation is performed while changing the time difference, and a temporal waveform of the pulsed light Lp1 is obtained.
Abstract:
A patterned light interference generating device 1 is provided with a laser light source 10; a wavefront controller 20 for receiving laser light, presenting a hologram pattern to control the wavefront of the laser light, and outputting wavefront-controlled light; an imaging optical system 40 for imaging the wavefront-controlled light at a target position 2; a filter 50 arranged at a portion of concentration by the imaging optical system 40; and a control unit 30 for controlling the hologram pattern; the filter 50 has a plurality of slits in one-to-one correspondence to a plurality of bright spots of a desired order; each of the plurality of slits has an elongated shape extending radially from a center of the plurality of bright spots of the desired order; one end on the center side of each of the plurality of slits is separated from the center.
Abstract:
An attenuator device includes: a first window pair that includes a pair of first windows having a pair of first surfaces extending to form a Brewster's angle with an optical axis; a rotation holding portion which holds the first window pair to be rotatable around the optical axis; a second window pair that includes a pair of second windows having a pair of second surfaces extending to form a Brewster's angle with the optical axis; and a λ/4 phase element which gives a phase difference of λ/4 between a polarized component parallel to an optical axis and a polarized component orthogonal to the optical axis when a wavelength of laser light is λ. The second window pair is disposed so that a vibration direction of a P-polarized component transmitted through the second window pair is inclined with respect to the optical axis of the λ/4 phase element by 45° when viewed from a direction parallel to the optical axis.
Abstract:
An autocorrelation measurement device includes a first reflection member, a second reflection member, a focusing unit, a nonlinear optical crystal, a detection unit, a filter, an aperture, a delay adjusting unit, and an analysis unit. Incident pulsed light is transmitted through the second reflection member and incident on the first reflection member. First pulsed light reflected on a first reflection surface of the first reflection member and a second reflection surface of the second reflection member and second pulsed light reflected on a second reflection surface of the first reflection member and a first reflection surface of the second reflection member are incident on the nonlinear optical crystal via the focusing unit. Second harmonic light generated in the nonlinear optical crystal is detected by the detection unit.
Abstract:
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.
Abstract:
An imaging system includes a light source for outputting initial pulsed light, a polarization control unit for rotating a polarization plane of the initial pulsed light, an optical pulse shaping unit for inputting the initial pulsed light with the rotated polarization plane, and outputting first pulsed light Lp1 having a first polarization direction and second pulsed light Lp2 having a second polarization direction different from the first polarization direction with a time, an irradiation optical system for irradiating an imaging object with the pulsed light Lp1 and the pulsed light Lp2, a light separation element for separating the pulsed light Lp1 and the pulsed light Lp2 reflected by or transmitted through the imaging object on the basis of the polarization directions, an imaging unit for imaging the pulsed light Lp1, and an imaging unit for imaging the pulsed light Lp2.
Abstract:
A pulsed light generation apparatus includes a dispersing unit for dispersing pulsed light for respective wavelengths, a polarization dependent type spatial light modulator for modulating the dispersed pulsed light in respective wavelengths, and a combining unit for combining wavelength components of the pulsed light output from the spatial light modulator. A polarization plane of the pulsed light input to the spatial light modulator is inclined with respect to a polarization direction in which the spatial light modulator has a modulation function. The spatial light modulator causes a time difference between a first polarization component of the pulsed light along the polarization direction and a second polarization component of the pulsed light intersecting with the first polarization component.
Abstract:
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.
Abstract:
In an aberration-correcting method according to an embodiment of the present invention, in an aberration-correcting method for a laser irradiation device 1 which focuses a laser beam on the inside of a transparent medium 60, aberration of a laser beam is corrected so that a focal point of the laser beam is positioned within a range of aberration occurring inside the medium. This aberration range is not less than n×d and not more than n×d+Δs from an incidence plane of the medium 60, provided that the refractive index of the medium 60 is defined as n, a depth from an incidence plane of the medium 60 to the focus of the lens 50 is defined as d, and aberration caused by the medium 60 is defined as Δs.