Abstract:
An aircraft includes a fuselage defining a longitudinal axis between a forward end and an aft end. The aircraft includes an electrical system having an electric storage. The electric storage is positioned within the fuselage.
Abstract:
A heat exchange system for an aircraft includes an aircraft controller for controlling an operation of an aircraft, a thermoelectric device having a low temperature side and a high temperature side, an inlet line that carries fluid through the low temperature side of the thermoelectric device and to the aircraft controller; and an outlet line that carrier the fluid away from the and aircraft controller through the high temperature side of the thermoelectric device. Heat is transferred away from the inlet line to the outlet line through the thermoelectric device when a predetermined condition is met.
Abstract:
According to one embodiment of this disclosure an integrated fuel cell and environmental control system includes a turbo-compressor. The turbo-compressor includes a rotatable shaft, a compressor rotatable with the shaft to generate a flow of compressed air, a motor connected to the shaft, and a turbine connected to the shaft. The system further includes a fuel cell connected to the compressor by a first compressed air supply line that supplies a first portion of the flow of compressed air to the fuel cell. The fuel cell is connected to the turbine by a fuel cell exhaust line that supplies a flow of fuel cell exhaust to the turbine and causes the turbine to rotate. The system further includes an environmental control system connected to the compressor by a second compressed air supply line that supplies a second portion of the flow of compressed air to the environmental control system.
Abstract:
Described herein is a thermal management system and methodology for a directed energy weapon on an aircraft. The thermal management system includes an evaporator in thermal communication with the directed energy weapon and operatively configured to cool the directed energy weapon by evaporating a refrigerant therein. The thermal management system also includes a refrigerant storage tank in fluid communication with the evaporator and a pump in fluid communication with the refrigerant storage tank and the evaporator configured to pump substantially liquid refrigerant to the evaporator.
Abstract:
An on-board aircraft dried inert gas system includes a source inert gas containing water, an air cycle or vapor cycle cooling system, and a heat exchanger condenser. The heat exchanger condenser has a heat absorption side in thermal communication with the air cycle or vapor cycle cooling system. The heat exchanger condenser has a heat rejection side that receives the inert gas containing water and outputs dried inert gas.
Abstract:
An environmental control system (ECS) for an aircraft includes a primary heat exchanger, a compressor including an inlet fluidically connected to the primary heat exchanger, a turbine operatively connected to the compressor, and a cryogenic fluid heat exchanger fluidically connected to the primary heat exchanger.
Abstract:
An aircraft includes a fuselage defining a longitudinal axis between a forward end and an aft end. The aircraft includes an electrical system having an electric storage. The electric storage is positioned within the fuselage.
Abstract:
A battery thermal management system for an air vehicle includes a first heat exchange circuit, a battery in thermal communication with the first heat exchange circuit, and a heat exchanger positioned on the first heat exchange circuit. The heat exchanger is operatively connected to a second heat exchange circuit. The system includes a controller operatively connected to the second heat exchange circuit. The controller is configured to variably select whether heat will be rejected to the second heat exchange circuit. A method for controlling a thermal management system for an air vehicle includes determining an expected fluid temperature of fluid in a fluid heat exchange circuit. The method includes commanding a flow restrictor at least partially closed or commanding the flow restrictor at least partially open.
Abstract:
An on-board aircraft dried inert gas system includes a source inert gas containing water, an air cycle or vapor cycle cooling system, and a heat exchanger condenser. The heat exchanger condenser has a heat absorption side in thermal communication with the air cycle or vapor cycle cooling system. The heat exchanger condenser has a heat rejection side that receives the inert gas containing water and outputs dried inert gas.
Abstract:
A heat exchange system for an aircraft includes an aircraft controller for controlling an operation of an aircraft, a thermoelectric device having a low temperature side and a high temperature side, an inlet line that carries fluid through the low temperature side of the thermoelectric device and to the aircraft controller; and an outlet line that carrier the fluid away from the and aircraft controller through the high temperature side of the thermoelectric device. Heat is transferred away from the inlet line to the outlet line through the thermoelectric device when a predetermined condition is met.