Abstract:
To localize a vehicle in the given map precisely for autonomous driving, the vehicle needs to compare the sensor perceived environment with the map information accurately. To achieve this, the vehicle may use information received from multiple on-board sensors in combination of GPS and map data. Example implementations described herein are directed to maintaining accuracy of sensor measurements for autonomous vehicles even during sensor failure through a raw data fusion technique and a repopulation of data through a prediction technique based on historical information and statistical method if any of the sensors fail.
Abstract:
In the present invention, it is possible to accurately predict, at an earlier timing, that a pedestrian will perform constant speed movement or a route change that is more complex than the constant speed movement. Provided is a travel control device that can accurately determine a change in the route of the pedestrian according to a change in the pedestrian's posture and, in particular, a change in the orientation of the body or a change in an inverted angle, and that can appropriately control the travel of the vehicle.
Abstract:
Example implementations involve systems and methods to control the ego vehicle to trace connected plural curved paths, which are calculated as the movement of the vehicle against vertical repulsive force from straight or curved walls, and connected continuously at the joints, and differentiable by position at the joints. Further, the repulsion force acts as deceleration force and lateral force.
Abstract:
A vehicle drive control apparatus includes: an object detection unit which detects positions, speeds, and sizes of objects around an own vehicle; and a speed control unit which detects a moving object existing in a place adjacent to a scheduled travelling path of the own vehicle and a speed change induction obstacle inducing a future speed vector change of the moving object from the objects detected by the object detection unit and changes a speed of the own vehicle, on the basis of a relative position relation of the own vehicle and the detected moving object and the speed change induction obstacle.
Abstract:
A vehicle dynamics control device includes a control unit that executes braking/driving torque control based upon vehicle information that includes operation input information and vehicle dynamics information. The operation input information includes a lateral motion operation index pertaining to a lateral motion operation executed to generate a lateral motion in the vehicle; the vehicle dynamics information includes a longitudinal acceleration generated in the vehicle and a lateral motion index indicating a lateral motion occurring in the vehicle; and the control unit determines a handling assurance acceleration limit with a maximum longitudinal acceleration value that assumes a substantially linear proportional relationship with the lateral motion operation index and the lateral motion index over a range in which the lateral motion operation index assumes a value equal to or less than a predetermined value or the lateral motion index assumes a value equal to or less than a predetermined value.
Abstract:
The present invention relates to methods and apparatuses for performing driving assistance for a controlled vehicle, involving determining a longitudinal acceleration target value on the basis of a lateral acceleration of the controlled vehicle and one or more setting parameters, and controlling a longitudinal acceleration of the controlled vehicle on the basis of the calculated longitudinal acceleration target value. According to the invention, a lateral acceleration acting, during cornering, on a proceeding vehicle, which moves in the longitudinal direction on the road ahead of the controlled vehicle, is estimated, and the one or more setting parameters for the calculation of the longitudinal acceleration target value are set based on the estimated lateral acceleration acting on the proceeding vehicle during cornering.
Abstract:
A control system for an electric vehicle includes: an electricity storage device that performs charging and discharging of electrical power; a plurality of load devices that receive supply of electrical power from the electricity storage device and perform operations; and a control device that controls the electricity storage device and the plurality of load devices. And when electrical power is supplied from the electricity storage device to the plurality of load devices, the control device calculates a charge/discharge efficiency of the electricity storage device and a working efficiency of each of the load devices, and regulates an amount of electrical power supplied from the electricity storage device to each of the load devices, so as to enhance an overall efficiency of the electricity storage device and the plurality of load devices.
Abstract:
A vehicle motion control system is capable of defining clear guidelines on more specific control timing associated with accelerating, steering, and braking operations, and conducting motion control based on the defined guidelines. An ideal motion control unit within a central controller uses longitudinal jerk information of a vehicle to control the steering of the vehicle. Information for determining the initiation timing of steering is presented from a human-vehicle interface (HVI) to a driver. In accordance with the information presented from the HVI, the driver controls the initiation timing of steering.