Abstract:
Provided is an electric propulsion device 106 including a propeller 131 and a motor 121 for rotating the propeller, wherein the propeller includes a rotary boss 132 secured to a rotating shaft 123 of the motor, and blades 133 protruding radially outward from the rotary boss. Further, the blades include a base end portion with an airfoil continuously changing such that a trailing edge comes to be in parallel to the rotating shaft of the motor from a radially outer side to the rotary boss, in a vicinity of the rotary boss.
Abstract:
An axial gap rotating electric machine includes a pair of rotors fixed to a rotating shaft, a stator, a holding member holding the stator, and a housing. The stator includes cores arranged in a circumferential direction of the rotating shaft, and coils wound around the cores. The holding member and the housing are conductive. The holding member includes an outer peripheral portion firmly fixed on an inner wall of the housing, and a protruding portion protruding from the outer peripheral portion toward the rotating shaft. The protruding portion includes a plurality of protruding portions in the circumferential direction of the rotating shaft. The core is held by a pair of the protruding portions adjacent in the circumferential direction of the rotating shaft, and a gap to interrupt a path of eddy currents between distal ends of the pair of the protruding portions is provided between the distal ends.
Abstract:
The purpose of the present invention is to provide a low-cost heat cycle system that can reduce power consumption; an in-wheel motor that is driven by using this heat cycle system; and a vehicle in which this heat cycle system is installed. This heat cycle system is provided with: a compressor; an accumulator; an electric drive unit comprising an electric motor; a refrigerant compressed by the compressor; and an indoor heat exchanger and an outdoor heat exchanger responsible for heat exchange of the refrigerant. The heat cycle system comprises a four-way valve that comprises a single circulation path for circulating the refrigerant and that can switch the connection destination of a refrigerant discharge section of the compressor to the indoor heat exchanger or the outdoor heat exchanger. A cooling unit of the electric drive unit is arranged upstream of the accumulator in the flow of the refrigerant.
Abstract:
A radial gap type rotating electrical machine using amorphous metal that can realize high efficiency and is excellent in productivity is provided. The radial gap type rotating electrical machine according to the present invention includes a rotor including a rotary shaft and a rotor iron core that rotates around the rotary shaft, and a stator including a stator iron core that is disposed to face the rotor iron core. The stator iron core has an annular shape and has a back yoke (4) having a plurality of recesses provided along inner periphery, and a tooth (3) having one end fitted to the recess and the other end protruding toward the rotor iron core, the tooth (3) has a laminate in which amorphous metal foil strips are laminated in an axial direction of the rotary shaft, and an insulating member (2) that holds the laminate, and a magnetic material (1) is provided in an end portion on a side facing the rotor of the insulating member (2).
Abstract:
Provided is a bearing electrolytic corrosion countermeasure technology achieving excellent reliability without increasing the number of components. A rotating electrical machine of the invention includes: a stator; a shaft penetrating the stator; a rotor facing the stator via a gap in an axial direction; and a housing holding the stator, in which: the stator includes, in a circumferential direction, a plurality of stator units each of which includes a grounded first conductive member, a core, a bobbin, and a winding wound around the bobbin; the bobbin has a flange portion provided between the winding and the rotor; the first conductive member is provided between the flange portion and the rotor and is in contact with the core, and, in a case where projection is performed in the axial direction, the winding is provided such that a projected portion of a part of the winding wound around the bobbin is within a projected portion of the flange portion; and the first conductive member is provided such that the projected portion of the first conductive member is included in the projected portion of the flange portion.
Abstract:
An axial gap rotating-electric machine includes a stator, a rotor arranged via an air gap in the direction of an axis of rotation of a rotating-electric machine with respect to the stator, and a housing configured to accommodate the stator and the rotor, and the stator includes a plurality of stator cores arranged in the circumferential direction, coils configured to wind the peripheries of the respective stator cores, and a resin for molding the plurality of stator cores wound with the coils, and the stator cores each include a protruding portion protruding partly from the coil in the direction of axis of rotation, and a conductive member is provided so as to come into contact with peripheral surfaces of the protruding portions of the stator cores, and grounding is achieved by the conductive member.
Abstract:
The purpose of the present invention is to obtain a structure with which it is possible to improve the heat dissipation performance and efficiency of an axial gap dynamo-electric machine. Accordingly, the present invention is an axial gap dynamo-electric machine of such construction that a disc-shaped rotor in which permanent magnets are disposed is provided in the axial direction and a stator is disposed in the axial-direction center portion, wherein the outer circumferential side of a stator winding is in intimate contact with the inside diameter of a housing, embedding with a mold resin is used for the housing and a stator core and for a stator coil and the housing so that a connection is established with the housing, and the housing comprises a non-magnetic, electrically nonconductive material.
Abstract:
To significantly improve a heat dissipation property of an axial gap rotary electric machine within a size necessary for configuring a motor. In an axial gap rotary electric machine comprising a stator and a rotor in an axial direction, the stator has a plurality of stator cores arranged in a circumferential direction and coils wound around the stator cores, and a heat pipe obtained by filling an inside of a metal hollow pipe with a refrigerant is arranged in a gap between adjacent coils formed in an outer diameter portion of the stator in a radial direction and a housing with a necessary insulation distance between the coils and the heat pipe. The heat pipe extends in a direction of a rotation axis and an opposite output side, and is in contact with a heat dissipating fin outside an end bracket on the opposite output side.
Abstract:
There is provided an axial gap polyphase motor whereby losses caused by eddy currents generated in a stator core can be eliminated, while the stator core can be prevented from shifting out of position. The stator for use in the axial gap polyphase motor is provided with a layered stator core 1A having a plurality of core portions 2 arranged at equal spacing in the circumferential direction and protruding in the axial direction, and a plurality of supporting portions connecting and supporting the adjacent core portions 2, coils wound onto the core portions 2, and fastening members 4 made of conductive material. Only the core portions 2 onto which are wound the coils for flow of electric current of a single phase from among the multiple phases have first apertures 2H in the radial direction. The fastening members 4 are inserted into the first apertures 2H.
Abstract:
To reduce an axial voltage while securing a high output, high efficiency, and assemblability of an axial gap rotary electric machine. An axial gap rotary electric machine includes: a stator, formed by arranging a plurality of core members circularly about a shaft in a direction in which magnetic lines are parallel with the shaft, the core member having at least an iron core and a coil wound around an outer circumference of the iron core; at least one rotor facing the stator with a predetermined air gap interposed therebetween in a shaft axial direction; and a housing having an inner circumferential surface opposing the stator and the rotor in a radial direction. The axial gap rotary electric machine further includes a wiring board that has: a bus portion continuous in the circumferential direction; a coil connection portion protruding from the bus portion and connected to the coil; and an external connection portion protruding from the bus portion. The wiring board is arranged at an outer circumferential side of the plurality of circularly-arranged iron cores.