Abstract:
A nucleic acid analysis device which can determine a DNA sequence has a flowcell in which two or more DNA fragment clusters of two or more DNA fragments having identical nucleotide sequences are immobilized. At least a part of the flowcell is made of a transparent material. An irradiation unit irradiates a part in which the DNA fragment clusters are immobilized. The device has a lens for collecting fluorescence, and a light-detection element. A solution containing only dATP having a fluorescently modified phosphate terminal among four bases, a solution containing only dCTP having a fluorescently modified phosphate terminal among the four bases, a solution containing only dGTP having a fluorescently modified phosphate terminal among the four bases, a solution containing only dTTP having a fluorescently modified phosphate terminal among the four bases, and a buffer solution are sent sequentially to where the DNA fragment clusters are immobilized.
Abstract:
In a biomaterial analysis, erroneous detection of a particle emitting fluorescence is prevented, and highly sensitive and highly accurate optical detection in biomaterial analysis is performed. A flow cell (104) for biomaterial analysis includes: a light-transmissive upper substrate (310); an antireflective lower substrate (313); and an inner layer section interposed between the upper substrate (310) and the lower substrate (313) and including a flow path (311) in which a particle (312) configured to emit fluorescence is provided. A biomaterial analysis device includes: a flow cell (104) for biomaterial analysis as described above; and an irradiation unit configured to irradiate excitation light; and an optical detection unit (106) configured to detect fluorescence emitted by the particle (312).
Abstract:
The purpose of the present invention is to provide a DNA transport control device having excellent reliability and durability, and a DNA sequencing device that uses the DNA transport control device. The present invention provides a DNA transport control device having a nanopore which allows for the passage of only the DNA strand of a single molecule, and a DNA sequencing device that uses the DNA transport control device. The DNA transport control device is characterized by the following: including a base material having openings and a thin film a block copolymer formed on the base material; the thin film including microdomains that are formed as a result of self-assembly of the block copolymer and that penetrate the thin film, and a matrix surrounding the microdomains; and the nanopore being formed from one opening in the base material and a single microdomain.
Abstract:
A nucleic acid analysis device which can determine a DNA sequence has a flowcell in which two or more DNA fragment clusters of two or more DNA fragments having identical nucleotide sequences are immobilized. At least a part of the flowcell is made of a transparent material. An irradiation unit irradiates a part in which the DNA fragment clusters are immobilized. The device has a lens for collecting fluorescence, and a light-detection element. A solution containing only dATP having a fluorescently modified phosphate terminal among four bases, a solution containing only dCTP having a fluorescently modified phosphate terminal among the four bases, a solution containing only dGTP having a fluorescently modified phosphate terminal among the four bases, a solution containing only dTTP having a fluorescently modified phosphate terminal among the four bases, and a buffer solution are sent sequentially to where the DNA fragment clusters are immobilized.