Abstract:
An apparatus for storing a thin film device, the apparatus including: a thin film device 3 having an insulating thin film containing Si and having a thickness of 100 nm or less; a solution in contact with the thin film; and a container having a tank that seals the solution, wherein the solution is a solution that satisfies any of the following conditions (1) to (3).
(1) A solution containing water in a volume ratio of 0% or more to 30% or less (2) A solution cooled and maintained at a temperature equal to or higher than a solidification point and lower than 15° C. (3) A solution that contains a salt with a concentration of 1 mol/L or more and a saturation concentration or less and is cooled and maintained to a temperature equal to or higher than a solidification point and lower than 25° C.
Abstract:
The purpose of the present invention is to control, with a simple structure and high accuracy, irradiation of excitation light to a multi-nanopore substrate without interrupting a measurement. Irradiation of excitation light is performed concurrently to at least one nanopore and at least one reference object on a substrate mounted in an observation container 103. A position irradiated with the excitation light in a measurement sample is calculated on the basis of a signal generated from the reference object detected by a detector 109, and the measurement and a fixed position control is performed concurrently by performing measurement of the measurement object while a drive control part 115 controlling the position of the irradiation of the excitation light to the measurement sample on the basis of the calculation result, whereby an analysis of the measurement sample can be performed in a short time.
Abstract:
Provided is a nucleic acid analyzer, which does not require manual processes by a highly trained operator such as a researcher and is easy to use, small-sized, capable of accepting multiple samples, and performs speedy analysis, and a nucleic acid analysis method using the analyzer. The analyzer and method perform detection in a plurality of exposure times, provide a program for determining a threshold for signal detection, and determine whether a faint signal peak is a false signal peak.
Abstract:
In a biomaterial analysis, erroneous detection of a particle emitting fluorescence is prevented, and highly sensitive and highly accurate optical detection in biomaterial analysis is performed. A flow cell (104) for biomaterial analysis includes: a light-transmissive upper substrate (310); an antireflective lower substrate (313); and an inner layer section interposed between the upper substrate (310) and the lower substrate (313) and including a flow path (311) in which a particle (312) configured to emit fluorescence is provided. A biomaterial analysis device includes: a flow cell (104) for biomaterial analysis as described above; and an irradiation unit configured to irradiate excitation light; and an optical detection unit (106) configured to detect fluorescence emitted by the particle (312).
Abstract:
An object of the present invention is to provide a biomolecule measuring device that can decrease the influence of crosstalk between chambers. A biomolecule measuring device according to the present invention supplies, to electrodes equipped on chambers, voltages modulated differently to each other.
Abstract:
Provided are a first tank; a second tank; a thin film having a nanopore, which communicates the first tank to the second tank, and disposed between the first and second tanks; a first electrode provided in the first tank; and a second electrode provided in the second tank. A wall surface of the nanopore has an ion adsorption preventing structure to prevent desorption/adsorption of an ion contained in a solution filling the first tank and/or the second tank, and a voltage is applied between the first and second electrodes to measure an ion current flowing through the nanopore.
Abstract:
In the microscope observation container according to the present invention, an observed sample is accommodated by an objective lens barrel provided with a housing extending along the radiation direction of excitation light and an objective lens fixed to an inside surface of the housing. The microscope observation container is provided with a structure for collecting a liquid immersion medium added by dispensation, the structure having a portion contacted by the objective lens barrel during observation. During observation the aforementioned portion is contacted by the objective lens barrel, and the liquid immersion medium is thereby sealed by the objective lens barrel and the structure. The aforementioned portion also has an elastic force, and is deformed so as to conform to the housing of the objective lens by the contact.
Abstract:
With a microspectroscopy device provided with an objective lens with a high numerical aperture, a defocus arises from thermal drift, etc., necessitating auto-focusing. Conventional auto-focus based on through-focus image acquisition takes time, and thus, it cannot be applied to continuous measurement over a long time wherein high-speed sampling is carried out. The present invention addresses this problem by having a defocus-sensing beam that has either defocus or astigmatism fall incident on the objective lens. Since how the image of the spot of the beam for defocus sensing blurs differs depending on the orientation of the defocus, real-time detection of the amount and orientation of defocus becomes possible, and high-speed realtime auto-focus becomes possible.