Abstract:
An antenna combination includes a feed-through having an input side including a connector for coupling to a transmission line connector and an output side including an inner cavity attaching to an aperture in a top surface or a nozzle of a tank. A foam filled dielectric rod antenna is coupled to the output side of the feed-through having a nose portion including a sub-portion within the inner cavity and a rod-shaped portion from beyond the inner cavity to an antenna launch end. The rod-shaped portion includes an outer solid dielectric material including a thickness transition region, wherein a thickness of the solid dielectric material decreases toward the antenna launch end to a constant minimum thickness shell region that extends to the antenna launch end. The outer solid dielectric material defines an inner hollow region. A dielectric foam fill material fills the inner hollow region.
Abstract:
Micro discharge devices, methods, and systems are described herein. One device includes a non-conductive material, a channel through at least a portion of the non-conductive material having a first open end and a second open end, a first electrode proximate to a first circumferential position of the channel between the first open end and the second open end, a second electrode proximate to a second circumferential position of the channel between the first open end and the second open end, a discharge region defined by a portion of the channel between the first electrode and the second electrode, an optical emission collector positioned to receive an optical emission from the discharge region; and a discharge shielding component between the discharge region and the optical emission collector.
Abstract:
Micro discharge devices, methods, and systems are described herein. One device includes a non-conductive material, a channel through at least a portion of the non-conductive material having a first open end and a second open end, a first electrode proximate to a first circumferential position of the channel between the first open end and the second open end, a second electrode proximate to a second circumferential position of the channel between the first open end and the second open end, a discharge region defined by a portion of the channel between the first electrode and the second electrode, an optical emission collector positioned to receive an optical emission from the discharge region, and a discharge shielding component between the discharge region and the optical emission collector.
Abstract:
A galvanic isolator includes a multi-layer printed circuit board (PCB) including a dielectric material having a top side and a bottom side. An RF transmission line is embedded within the PCB including a plurality of conductor traces spaced apart from one another to include a plurality of gaps (G1 and G2) in a path of the RF transmission line to provide an inline distributed capacitor that together with an impedance of the RF transmission line forms a bandpass (BP) filter. A top metal layer is on the top side and a bottom metal layer on the bottom side connected to one another by a plurality of metal filled vias on respective sides of the RF transmission line. The top metal layer and bottom metal layer each also include at least one gap.
Abstract:
Apparatus and associated methods relate to an in-hole current-measurement system having three or more magnetic-field sensors and a transient-disturbance selection module configured to form an output signal from a selected subset of sensor signals while decoupling the output signals from a non-selected subset of sensor signals during a predetermined time window when a disturbance signal is expected at the non-selected set of sensor signals. In an illustrative example, a disturbance producing operation may be performed on alternating subsets of sensors while the undisturbed subset of sensors measures an electrical current in the electrical conductor. For example, each selected subset of sensors may be aligned on an axis configured to be mounted perpendicular to current flow within a hole in the electrical conductor. Some embodiments may advantageously provide continuous electrical current measurement while being uninterrupted by the predetermined transient disturbances.
Abstract:
Apparatus and associated methods relate to an in-hole current-measurement system having three or more magnetic-field sensors and a transient-disturbance selection module configured to form an output signal from a selected subset of sensor signals while decoupling the output signals from a non-selected subset of sensor signals during a predetermined time window when a disturbance signal is expected at the non-selected set of sensor signals. In an illustrative example, a disturbance producing operation may be performed on alternating subsets of sensors while the undisturbed subset of sensors measures an electrical current in the electrical conductor. For example, each selected subset of sensors may be aligned on an axis configured to be mounted perpendicular to current flow within a hole in the electrical conductor. Some embodiments may advantageously provide continuous electrical current measurement while being uninterrupted by the predetermined transient disturbances.
Abstract:
An apparatus includes an antenna having multiple layers. At least a first of the layers includes both an effective medium and an electromagnetic bandgap (EBG) medium. The antenna could include a ground plane and a feed line, and the first layer of the antenna can be located between the ground plane and the feed line. The antenna could also include a slot ground and a planar antenna structure, and the first layer of the antenna could be located between the slot ground and the planar antenna structure. The antenna could further include a first substrate between a feed line and a slot ground and a second substrate covering a planar antenna structure, and the first layer could include one of the first and second substrates.
Abstract:
Devices, methods, and systems for monitoring thickness uniformity are described herein. One system includes a transmitter configured to transmit a signal through a portion of a material while the material is moving, an attenuator configured to absorb a first portion of the transmitted signal, a reflector configured to reflect a second portion of the transmitted signal, a receiver configured to receive the reflected signal, and a computing device configured to determine a thickness of the portion of the material based on a time delay between the transmission of the signal and the reception of the reflected signal.
Abstract:
A dielectric hollow antenna apparatus includes a hollow inside tapered rod (e.g., a waveguide) with a flat section and a cap. The antenna further includes a feed through section, a feed pin, and a metal flange. A low loss dielectric material fills the hollow rod that protrudes beyond the metal waveguide to form a radiating element. The radiating element is designed in such a way to maximize radiation and minimize reflections over the antenna bandwidth. The feed through section reduces internal reflection and the waveguide is designed to include a rectangular waveguide that support a propagation (TE01) mode and the waveguide then transitions to a circular waveguide that supports another propagation (TE11) mode. The antennas can be employed for radar level gauging and withstand high temperature and possesses a small diameter that permits the antenna to fit in small tank nozzles.
Abstract:
Devices, methods, and systems for monitoring thickness uniformity are described herein. One system includes a transmitter configured to transmit a signal through a portion of a material while the material is moving, an attenuator configured to absorb a first portion of the transmitted signal, a reflector configured to reflect a second portion of the transmitted signal, a receiver configured to receive the reflected signal, and a computing device configured to determine a thickness of the portion of the material based on a time delay between the transmission of the signal and the reception of the reflected signal