Continuous online self-calibrating resonant FM microelectromechanical systems (MEMS) accelerometer

    公开(公告)号:US11493534B1

    公开(公告)日:2022-11-08

    申请号:US16673878

    申请日:2019-11-04

    Abstract: A self-calibration method for an accelerometer having a proof mass separated by a gap from a drive electrode and a sense electrode includes initializing the accelerometer to resonate, applying a first bias voltage to the sense electrode and a second bias voltage to the drive electrode to obtain a first scale factor, measuring a first acceleration over a first time interval, swapping the first bias voltage on the sense electrode with the second bias voltage previously on the drive electrode and the second bias voltage on the drive electrode with the first bias voltage previously on the sense electrode so that a bias voltage on the sense electrode is set to the second bias voltage and a bias voltage on the drive electrode is set to the second bias voltage to obtain a second scale factor, measuring a second acceleration over a second time interval, and calculating a true acceleration.

    Micro-resonator having lid-integrated electrode

    公开(公告)号:US09991868B1

    公开(公告)日:2018-06-05

    申请号:US14686567

    申请日:2015-04-14

    Abstract: A micro-resonator employs a lid-integrated electrode to one or more of drive, sense and tune a vibrational resonant mode of a microelectromechanical systems (MEMS) resonator. The micro-resonator includes a lid attached to a base that provides a resonator cavity. The micro-resonator further includes the MEMS resonator extending from a surface of the base toward the lid within the resonator cavity. The lid-integrated electrode extends vertically from the lid into the resonator cavity toward the base. The vertically extending, lid-integrated electrode is positioned spaced from and adjacent to a side of the MEMS resonator to one or more of drive, sense and tune mechanical movement of the MEMS resonator.

    Method of fabricating a SiC resonator

    公开(公告)号:US11469732B2

    公开(公告)日:2022-10-11

    申请号:US16368737

    申请日:2019-03-28

    Abstract: A method of making a SiC resonator includes forming a layer of an oxide material on a relatively thick wafer of SiC; bonding the layer of oxide material on the relatively thick wafer of SiC to a handle wafer having at least an oxide exterior surface, the resulting bond being substantially free of voids; planarizing the relatively thick wafer of SiC to a desired thickness; forming top and bottom electrodes on the wafer of SiC wafer to define a SiC wafer resonator portion; and forming a trench around the top and bottom electrodes, the tench completely penetrating the planarized wafer of SiC around a majority of a distance surrounding said top and bottom electrodes, except for one or more tether regions of the planarized wafer of SiC which remain physically coupled a remaining portion the SiC wafer resonator portion which defines a frame formed of the planarized wafer of SiC surrounding the SiC wafer resonator portion.

    Curved phononic crystal waveguide
    10.
    发明授权

    公开(公告)号:US11244667B1

    公开(公告)日:2022-02-08

    申请号:US16258439

    申请日:2019-01-25

    Abstract: A curved phononic waveguide. In some embodiments, the curved phononic waveguide includes a sheet including a plurality of standard reflectors and a plurality of divergent reflectors. Each of the standard reflectors is associated with a respective grid point of a grid defined by a plurality of intersecting lines, each grid point being a respective intersection of two of a plurality of intersecting lines, the grid being locally periodic to within 5%, and having a local grid spacing. Each of the standard reflectors has a center separated from the respective grid point of the standard reflector by at most 1% of the grid spacing. The divergent reflectors define a waveguide among the standard reflectors, each of the divergent reflectors being an absent reflector or a reflector that is smaller than one of the standard reflectors.

Patent Agency Ranking