SYSTEM AND METHOD FOR GENERATING OUTPUT OF A DOWNHOLE INERTIAL MEASUREMENT UNIT

    公开(公告)号:US20180371894A1

    公开(公告)日:2018-12-27

    申请号:US16018695

    申请日:2018-06-26

    Abstract: A method for generating an output of a downhole inertial measurement unit (IMU) includes: generating a trajectory between a plurality of survey points of a planned well data as a function of time, wherein the planned well data includes a plurality of three-dimensional coordinates corresponding to the survey points of an underground planned well are used to generate a trajectory comprising a plurality of trajectory coordinates between the consecutive ones of the survey points; generating sensor data for each of the trajectory coordinates as a function of time based on the geodetic reference parameters, the generated sensor data comprising: generated accelerometer output; generated gyroscopic output; and generated magnetometer output; and outputting the generated accelerometer output; the generated gyroscopic output; and the generated magnetometer output as a function of time as a generated output of the downhole IMU.

    Double-pulse technique for on-line diagnostics of electrochemical systems

    公开(公告)号:US10222426B2

    公开(公告)日:2019-03-05

    申请号:US14301334

    申请日:2014-06-11

    Abstract: A method for dynamic characterization of an electrochemical system (such as a lithium-ion battery) is provided, comprising exciting an electrochemical system with a plurality of double-pulse sequences, each comprising a constant-current discharge pulse, a constant-current charge pulse having the same pulse width and pulse amplitude, and a zero-current period between the pulses; and calculating an impulse response, using a recursive or matrix-based method, to dynamically characterize the electrochemical system. A constant state-of-charge is maintained in the electrochemical system. Therefore the signal-to-noise ratio is high due to the repetition of the driving sequence. This method may be employed for on-line determination of the impedance spectrum of an electrochemical system, since the cycling profile can be easily integrated into charge/discharge profiles. Batteries (and other devices) can be diagnosed at high speed and with high accuracy. The double-pulse sequence is robust for fairly noisy systems.

    Methods for on-line, high-accuracy estimation of battery state of power

    公开(公告)号:US09989595B1

    公开(公告)日:2018-06-05

    申请号:US14586828

    申请日:2014-12-30

    CPC classification number: G01R31/3648 G01R31/3606

    Abstract: Some variations provide a method for real-time estimation of state of charge and state of power of a battery, comprising: (a) cycling a battery with a driving profile; (b) utilizing a recursive algorithm that relates battery terminal voltage to battery current, wherein the algorithm includes open-circuit voltage and a finite-impulse-response filter to dynamically model kinetic voltage; measuring the battery terminal voltage and the battery current at least at a first time and a second time during cycling; calculating battery open-circuit voltage and finite-impulse-response filter parameters; calculating battery state of charge based on the open-circuit voltage; and calculating battery state of power based on the open-circuit voltage and the finite-impulse-response filter parameters. An extended Kalman filtering technique is incorporated for real-time updating of FIR model parameters. Only a single FIR filter is necessary, making these methods applicable for battery-powered systems with limited computing and storage capabilities.

    Methods and apparatus for sensing the internal temperature of an electrochemical device

    公开(公告)号:US09880061B2

    公开(公告)日:2018-01-30

    申请号:US14303132

    申请日:2014-06-12

    Abstract: The internal temperature of an electrochemical device may be probed without a thermocouple, infrared detector, or other auxiliary device to measure temperature. Some methods include exciting an electrochemical device with a driving profile; acquiring voltage and current data from the electrochemical device, in response to the driving profile; calculating an impulse response from the current and voltage data; calculating an impedance spectrum of the electrochemical device from the impulse response; calculating a state-of-charge of the electrochemical device; and then estimating internal temperature of the electrochemical device based on a temperature-impedance-state-of-charge relationship. The electrochemical device may be a battery, fuel cell, electrolytic cell, or capacitor, for example. The procedure is useful for on-line applications which benefit from real-time temperature sensing capabilities during operations. These methods may be readily implemented as part of a device management and safety system.

Patent Agency Ranking