Abstract:
Embodiments of the present disclosure disclose a method and an apparatus for determining a precoding matrix, which relate to the field of communications technologies and may improve throughput of a MIMO system and optimize overall system performance, including: determining a rank constraint of a jth transmitting end, where j=1, 2, . . . , K, and K is the total number of transmitting ends in a MIMO system; iteratively calculating an optimal precoding matrix of the jth transmitting end according to a channel matrix from the jth transmitting end to a jth receiving end, an autocorrelation matrix of interference and noise of the jth receiving end, and the rank constraint of the jth transmitting end, where the optimal precoding matrix maximizes channel capacity of a link from the jth transmitting end to the jth receiving end under a circumstance that precoding matrices of other transmitting ends do not change.
Abstract:
The present invention relates to the field of communications technologies, and discloses a method, an apparatus, and a system for suppressing interference in a massive multiple-input multiple-output system, which overcome a disadvantage of sensitivity to a backhaul delay during an inter-cell interference cancellation process in an existing massive multiple-input multiple-output system. A specific embodiment of the present invention includes: obtaining channel correlation matrixes of all links, and further calculating a combined outer precoder set according to the channel correlation matrixes, where each combined outer precoder includes at least one outer precoder, and the outer precoder is a semi-unitary matrix and is not sensitive to a backhaul delay. Technical solutions of the present invention are mainly applied to a process of processing interference in a massive multiple-input multiple-output system.
Abstract:
A resource allocation method and a base station which includes: acquiring, by the base station, channel state information (CSI) of a current scheduling timeslot; obtaining a compensation factor according to the CSI and a preset packet error ratio, where the compensation factor is a value corresponding to the preset packet error ratio in an inverse cumulative distribution function of a non-central chi-square random variable and a non-central parameter; replacing the CSI with the compensation factor, and determining a functional relationship between rate and power of sending data by the base station if a packet error ratio of the base station is less than or equal to the preset packet error ratio; and determining, according to the functional relationship and a generalized dynamic back pressure algorithm, the rate and total power of sending data by the base station, so as to minimize the total power of the base station.
Abstract:
A resource allocation method and a base station which includes: acquiring, by the base station, channel state information (CSI) of a current scheduling timeslot; obtaining a compensation factor according to the CSI and a preset packet error ratio, where the compensation factor is a value corresponding to the preset packet error ratio in an inverse cumulative distribution function of a non-central chi-square random variable and a non-central parameter; replacing the CSI with the compensation factor, and determining a functional relationship between rate and power of sending data by the base station if a packet error ratio of the base station is less than or equal to the preset packet error ratio; and determining, according to the functional relationship and a generalized dynamic back pressure algorithm, the rate and total power of sending data by the base station, so as to minimize the total power of the base station.
Abstract:
The present invention provides a data transmission method, a transmitter, and a receiver in a coordinated communication system, including: precoding, by a first transmitter, its payload data by using a first precoding matrix to obtain first precoded data; precoding, by the first transmitter, coordinated data by using a second precoding matrix to obtain second precoded data to cancel interference with the first precoded data at a receiver caused by data transmitted by another transmitter; and transmitting the first precoded data and the second precoded data after the precoding to the receiver. According to the method, the first transmitter codes its payload data by using the first precoding matrix; and codes the coordinated data by using the second precoding matrix to cancel, by using different precoding matrices, the interference with the first precoded data at the receiver caused by the data transmitted by another transmitter.