Abstract:
This application discloses a network slicing method. The method includes obtaining metadata information of each of multiple traffic flows, determining a classification policy according to metadata information of the multiple traffic flows, determining a network slicing policy according to the classification policy, and the network slicing policy includes a mapping relationship between a traffic flow type and a network slice and a slice weight of the network slice, and determining a resource node policy according to the network slicing policy, where the resource node policy includes a mapping relationship between at least one resource node in the network and the at least one network slice and a resource weight of each resource node, and the resource weight of the resource node indicates a ratio of a resource of each of network slices corresponding to the resource node to a resource of the resource node.
Abstract:
Embodiments of this application relate to the field of communications technologies, and disclose a dynamic scheduling method, an apparatus, and a system, so as to reduce information exchange costs and calculation complexity of data scheduling and route allocation. The method includes: receiving, by a scheduling platform, first VOQ length information of each aggregation switch in each timeslot; aggregating all the received first VOQ length information, to obtain global VOQ length information, where the global VOQ length information includes a total quantity of data packets that need to be sent from each of M pods to other pods than the pod; determining a transmission matching scheme based on the global VOQ length information; and sending corresponding matching result information to each aggregation switch according to the transmission matching scheme, so that each aggregation switch sends a data packet according to the transmission matching scheme.
Abstract:
A network flow measurement method is applicable to a system including a network measurement device and a control plane device. The network flow measurement method includes measuring, by the network measurement device, first data, where the first data includes a first-type data structure, the first-type data structure includes first measurement information of a flow, and the first measurement information corresponds to a bit of a keyword of the flow, and sending, by the network measurement device, the first data to the control plane device.
Abstract:
Embodiments of the present invention provide a method used for an HTTP network, including: receiving, by a BNG, a first HTTP request sent by user equipment; adding, by the BNG, an identifier of the BNG to the first HTTP request, to obtain a second HTTP request; sending, by the BNG, the second HTTP request to an application server; receiving, by the BNG, a third HTTP request sent by the application server, where the third HTTP request includes location information of an image for creating a virtual machine; and obtaining, by the BNG, the image according to the location information, and creating, by the BNG, the virtual machine in the BNG according to the image.
Abstract:
A radio-frequency chip is provided, and relates to the field of chip technologies, to reduce a component loss caused by redundant components in the radio-frequency chip. The radio-frequency chip includes a phased array, the phased array includes a plurality of branches, and each of the plurality of branches includes a transmitting path, a receiving path, a common path, and a phase shifter. The phase shifter includes a first phase shift unit, a second phase shift unit, and a third phase shift unit. The first phase shift unit is located on the transmitting path, the second phase shift unit is located on the receiving path, and the third phase shift unit is located on the common path.
Abstract:
A method, an apparatus, and a system are provided for load balancing of a service chain. The method includes: receiving, by a flow classifier, a service chain selection and control policy sent by a policy and charging rules function (PCRF) unit; hashing, by the flow classifier according to a hash quantity, a service flow corresponding to a service chain identifier, to obtain multiple subflows, and adding the service chain identifier and hashing factors to packets of the subflows, where different subflows correspond to different hashing factors; and sending, by the flow classifier, the packets of the subflows after the service chain identifier and the hashing factors are added, to a forwarding device.
Abstract:
Embodiments of this application provide a network flow control method and a network device. The method includes: receiving a packet flow; determining, based on a service type of the packet flow, a service pipeline used for transmitting the packet flow, where service types of all packet flows in the service pipeline are the same; and based on a bandwidth weight allocated to the service type, transferring the packet flow in the service pipeline to a physical port. In the embodiments of this application, packet flows are allocated to different service pipelines based on a service type, and bandwidth weights are allocated, in a centralized manner, to service pipelines that carry a same service type.
Abstract:
The present invention discloses a service packet processing method, apparatus, and system. The method includes a first service atom receiving a second packet sent by a central switching device, where a first service packet is encapsulated in the second packet and the second packet further includes a first service path identifier. The first service atom performs first service processing according to information in the first service packet, to obtain a first processing result. The first service atom queries a first path switching entry according to the first processing result and the first service path identifier. The first service atom sends a third packet to the central switching device, where a source device identifier of the third packet is a device identifier of the first service atom, a second service packet is encapsulated in the third packet, and the third packet includes the second service path identifier.
Abstract:
A service packet processing method, apparatus, and system, the method including receiving, by a first network device, a first packet, where the first packet includes a first service path identifier, and the first service path identifier indicates a first service path for transmitting the first packet, generating, by the first network device, a second packet based on the first packet, where the second packet includes a second service path identifier indicating a second service path, and the second service path identifier is different from the first service path identifier, and sending, by the first network device, the second packet via the second service path.
Abstract:
Disclosed is a packet processing method and system, and a device. A status value used to identify a topology status of service nodes at a specified time is preconfigured for a packet in a packet flow, so that when a service node in a next hop is selected for the packet, selection is performed not based on a topology status of current actual service nodes in the next hop, but based on the topology status, which is identified by the status value, of the service nodes at the specified time. As long as status values carried in packets in a same packet flow are the same, even if a topology status of service nodes changes, a same service node can still be selected for the packets in the same packet flow, thereby avoiding a problem of diversion of the packets in the same packet flow.