Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
An apparatus and method for a driving guide of a vehicle are provided and include a sensor unit that has at least one sensor mounted within the vehicle. In addition, a controller is configured to sense obstacles positioned at a front and side of the vehicle using sensing information received from the sensor unit and arrange data for the obstacles based on an angle to determine whether a passage is present in front of the vehicle. In addition, the controller is configured to provide the driving guide of the checked passage.
Abstract:
The present invention provides a steering risk decision system and method that determine and provide a steering risk of a vehicle to a driver. The system includes an obstacle sensor that senses an obstacle to generate first sensor data and a driving state sensor senses a driving state of a vehicle to generate second sensor data. In addition, a processor extracts feature points from first sensor data to indicate the obstacle in point and line shapes and predicts a driving region of the vehicle using second sensor data. Further, the processor calculates a relationship between the vehicle and the obstacle using information for the obstacle indicated in the point and line shapes and information for the driving region to determine a steering risk of the vehicle based on the calculated result.
Abstract:
An apparatus and method for controlling a vehicle speed based on information about forward vehicles that travel in the same lane may be acquired using Vehicle to Everything (V2X) communications in a cooperative adaptive cruise control (CACC) system. The CACC system includes a communication unit receiving vehicle information from neighboring vehicles using V2V communications; an information collection unit collecting vehicle information of the neighboring vehicles and the subject vehicle using sensors; and a control unit determining a forward vehicle and a far-forward vehicle using the sensors, selecting first and second target vehicles for being followed by the subject vehicle based on the vehicle information of the forward vehicle and the far-forward vehicle and the vehicle information of the neighboring vehicles, and controlling the driving speed of the subject vehicle based on speed information of the first and second target vehicles.
Abstract:
An apparatus for preventing a pedestrian collision accident, a system having the same, and a method thereof are provided. The apparatus includes a pedestrian sensing unit that senses a pedestrian moving into a dangerous area and calculates velocity and direction information of the pedestrian. A communication unit transmits the velocity and direction information of the pedestrian to a surrounding vehicle. A time-to-collision (TTC) calculating unit calculates a TTC using velocity and direction information of a subject vehicle and second velocity and direction information of the pedestrian, when the TTC calculating unit receives the second velocity and direction information of the pedestrian from another vehicle. A controller outputs based on the TTC a warning to a driver of the subject vehicle or the pedestrian.
Abstract:
An adaptive cruise control apparatus includes a sensor device for acquiring information on vehicles around a subject vehicle including information on a distance between a forward vehicle and the subject vehicle, and a controller for calculating an acceleration of the subject vehicle based on the information on vehicles around the subject vehicle, determining a traffic condition around the subject vehicle based on the information on vehicles around the subject vehicle, limiting the acceleration of the subject vehicle according to the determined traffic condition, and controlling a power train of the subject vehicle according to the limited acceleration.
Abstract:
An apparatus and method for identifying surrounding vehicles is provided. The apparatus includes a sensor that measures position coordinates of a first surrounding vehicle and a yaw rate and a speed of a subject vehicle and a V2V communication unit that receives a coordinate history and a speed from the plurality of surrounding vehicles. Additionally, a controller generates a traveling trajectory and a speed pattern as first identification information by applying accumulated behaviors of the subject vehicle to the position coordinates of the first surrounding vehicle and calculate each traveling trajectory and speed pattern as n-th identification information based on the coordinate history and the speed received via the V2V communication unit. The controller then compares the first identification information with the n-th identification information to recognize the surrounding vehicle corresponding to identification information most similar to the first identification information as the first surrounding vehicle.
Abstract:
An apparatus for detecting a narrow road in front of a vehicle includes: a narrow road determination processor configured to generate circular arcs passing between obstacles, select a circular arc closest to the middle of the obstacles among the generated circular arcs, and generate an offset curve which is a circular arc having the same central point as the selected circular arc and contacting a corresponding obstacle at left/right sides of the selected circular arc, based on driving information and specification information of the vehicle, and then to determine that a road is a narrow road when a width between the two offset curves does not exceed a threshold value.
Abstract:
An apparatus for preventing a pedestrian collision accident, a system having the same, and a method thereof are provided. The apparatus includes a pedestrian sensing unit that senses a pedestrian moving into a dangerous area and calculates velocity and direction information of the pedestrian. A communication unit transmits the velocity and direction information of the pedestrian to a surrounding vehicle. A time-to-collision (TTC) calculating unit calculates a TTC using velocity and direction information of a subject vehicle and second velocity and direction information of the pedestrian, when the TTC calculating unit receives the second velocity and direction information of the pedestrian from another vehicle. A controller outputs based on the TTC a warning to a driver of the subject vehicle or the pedestrian.