摘要:
The disclosure provides a transistor, a method for manufacturing the transistor, and a semiconductor chip comprising the transistor. The transistor comprises: an active area, a gate stack, a primary spacer, and source/drain regions, wherein the active area is on a semiconductor substrate; the gate stack, the primary spacer, and the source/drain regions are on the active area; the primary spacer surrounds the gate stack; the source/drain regions are embedded in the active area and self-aligned with opposite sides of the primary spacer. Wherein the transistor further comprises: a silicide spacer, wherein the silicide spacer is located at opposite sides of the primary spacer, and a dielectric material is filled between the two ends of the silicide spacer in the width direction of the gate stack, so as to isolate the source/drain regions from each other.
摘要:
It is provided a transistor, a method for manufacturing the transistor, and a semiconductor chip comprising the transistor. A method for manufacturing a transistor may comprise: defining an active area on a semiconductor substrate, and forming on the active area a gate stack, a primary spacer, and source/drain regions, wherein the primary spacer surrounds the gate stack, and the source/drain regions are embedded in the active area and self-aligned with opposite sides of the primary spacer; forming a semiconductor spacer surrounding the primary spacer, and cutting off the ends of the semiconductor spacer in the width direction of the gate stack so as to isolate the source/drain regions from each other; and covering the surfaces of the source/drain regions and the semiconductor spacer with a layer of metal or alloy, and annealing the resulting structure, so that a metal silicide is formed on the surfaces of the source/drain regions, and so that the semiconductor spacer is transformed into a silicide spacer simultaneously. As such, the risk of transistor failure due to atoms or ions of Ni entering the channel region through the source/drain extension regions is reduced.
摘要:
A method for manufacturing a semiconductor structure comprises: providing a substrate (100) on which a dummy gate stack is formed, forming a spacer (240) at sidewalls of the dummy gate stack, and forming a source/drain region (110) and a source/drain extension region (111) at both sides of the dummy gate stack; removing at least part of the spacer (240), to expose at least part of the source/drain extension region (111); forming a contact layer (112) on the source/drain region (110) and the exposed source/drain extension region (111), the contact layer (112) being [made of] one of CoSi2, NiSi and Ni(Pt)Si2-y or combinations thereof, and a thickness of the contact layer (112) being less than 10 nm. Correspondingly, the present invention further provides a semiconductor structure which is beneficial to reducing contact resistance and can maintain excellent performance in a subsequent high temperature process.
摘要:
The present invention provides a method for manufacturing a semiconductor structure. The method can effectively reduce the contact resistance between source/drain regions and a contact layer by forming two contact layers of different thickness on the surfaces of the source/drain regions. Further, the present invention provides a semiconductor structure, which has reduced the contact resistance.
摘要:
A method for manufacturing a semiconductor structure comprises: providing a substrate (100) on which a dummy gate stack is formed, forming a spacer (240) at sidewalls of the dummy gate stack, and forming a source/drain region (110) and a source/drain extension region (111) at both sides of the dummy gate stack; removing at least part of the spacer (240), to expose at least part of the source/drain extension region (111); forming a contact layer (112) on the source/drain region (110) and the exposed source/drain extension region (111), the contact layer (112) being [made of] one of CoSi2, NiSi and Ni(Pt)Si2-y or combinations thereof, and a thickness of the contact layer (112) being less than 10 nm. Correspondingly, the present invention further provides a semiconductor structure which is beneficial to reducing contact resistance and can maintain excellent performance in a subsequent high temperature process.
摘要:
The present invention provides a method for manufacturing a semiconductor structure, comprising: providing a substrate, and forming a dummy gate stack on the substrate, sidewall spacers on sidewalls of the dummy gate stack, and source/drain regions at both sides of the dummy gate stack, wherein the dummy gate stack comprising a dummy gate; forming a first contact layer on surfaces of the source/drain regions; forming an interlayer dielectric layer to cover the first contact layer; removing the dummy gate or the dummy gate stack material to form an opening, filling the opening with a first conductive material or with a gate dielectric layer and a first conductive material to form a gate stack structure; forming through holes within the interlayer dielectric layer, so that a portion of the first contact layer or a portion of the first contact layer and the source/drain regions are exposed in the through holes; forming a second contact layer on the exposed portions of the regions; filling the through holes with a second conductive material to form contact vias. Besides, the present invention further provides a semiconductor structure, which is favorable for reducing the contact resistance.
摘要:
A semiconductor device structure and a method for manufacturing the same are disclosed. In one embodiment, the method comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction crossing the first direction on the semiconductor substrate, the gate line intersecting the fin via a gate dielectric layer; forming a dielectric spacer surrounding the gate line; forming a conductive spacer surrounding the dielectric spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gate electrodes of respective unit devices, and isolated portions of the conductive spacer form contacts of the respective unit devices.
摘要:
A semiconductor device structure and a method for manufacturing the same are disclosed. In one embodiment, the method comprises: forming a fin in a first direction on a semiconductor substrate; forming a gate line in a second direction crossing the first direction on the semiconductor substrate, the gate line intersecting the fin via a gate dielectric layer; forming a dielectric spacer surrounding the gate line; forming a conductive spacer surrounding the dielectric spacer; and performing inter-device electrical isolation at a predetermined region, wherein isolated portions of the gate line form gate electrodes of respective unit devices, and isolated portions of the conductive spacer form contacts of the respective unit devices.
摘要:
The present application discloses a method for manufacturing a semiconductor device, comprising the steps of: forming a semiconductor substrate, a gate stack and a second protection layer in sequence on a first insulating layer; after defining a gate region and removing portions of the second protection layer and the gate stack outside the gate region, while keeping portions of the stop layer, the semiconductor layer and the second insulating layer which covers sidewalls of the patterned semiconductor layer outside the gate region and exposing the sacrificial layer, performing source/drain ion implementation in the semiconductor layer; after forming a second sidewall spacer so as to cover at least the exposed portion of the sacrificial layer, removing the first protection layer and the second protection layer so as to expose the semiconductor layer and the gate stack; and forming a contact layer on the exposed portion of the semiconductor layer and the gate stack; performing planarization so as to expose the first protection layer, and then removing the first protection layer, the sacrificial layer, the stop layer and the semiconductor layer with the first sidewall spacer and the second sidewall spacer as a mask, so as to form a cavity which exposes the first insulating layer. It facilitates reduction of short channel effects, resistance of source/drain regions, and parasite capacitance.
摘要:
The present application discloses a method for manufacturing a semiconductor device, comprising the steps of: forming a semiconductor substrate, a gate stack and a second protection layer in sequence on a first insulating layer; after defining a gate region and removing portions of the second protection layer and the gate stack outside the gate region, while keeping portions of the stop layer, the semiconductor layer and the second insulating layer which covers sidewalls of the patterned semiconductor layer outside the gate region and exposing the sacrificial layer, performing source/drain ion implementation in the semiconductor layer; after forming a second sidewall spacer so as to cover at least the exposed portion of the sacrificial layer, removing the first protection layer and the second protection layer so as to expose the semiconductor layer and the gate stack; and forming a contact layer on the exposed portion of the semiconductor layer and the gate stack; performing planarization so as to expose the first protection layer, and then removing the first protection layer, the sacrificial layer, the stop layer and the semiconductor layer with the first sidewall spacer and the second sidewall spacer as a mask, so as to form a cavity which exposes the first insulating layer. It facilitates reduction of short channel effects, resistance of source/drain regions, and parasite capacitance.