摘要:
Various methods and systems for determining reverse-link data rates in a multi-user communication system are disclosed. For example, an apparatus for controlling a data rate of at least a first UE in a multi-user communication system is disclosed. The apparatus may include a channel estimation device configured to determine channel estimates for a plurality of different reverse-link signals to produce a plurality of channel estimates, a demodulation device configured to determine a first signal-to-noise (SNR) ratio for the first UE using the plurality of different channels estimates, and a data rate determining device configured to determine a first reverse-link data rate for the first UE using the first SNR.
摘要:
Techniques for efficiently deriving uplink channel estimates without consuming much additional uplink resources are described. A user equipment (UE) may send a request for uplink resources on a request channel (REQCH) whenever the UE desires to transmit data on the uplink. The UE may send the REQCH on a set of subcarriers and from multiple antennas, e.g., send REQCH data on data subcarriers and pilot on pilot subcarriers. A node B may receive the request, estimate the complex channel gains for the pilot subcarriers based on received pilot symbols, and coherently demodulate received data symbols based on the channel gain estimates. The Node B may estimate the complex channel gains for the data subcarriers based on demodulated data symbols and derive a channel estimate for each UE antenna based on the channel gain estimates for the pilot and data subcarriers. The Node B may use the channel estimates for MIMO scheduling, subband scheduling, and rate selection.
摘要:
Systems and methodologies are described that facilitate switching between various combinations of MIMO, SIMO, SISO and OFDM, LFDM and IFDM. According to various aspects, a method for a wireless communication network is provided that includes: receiving a first set of data information, wherein the first set of information comprising a first value, determining if the first value is above a threshold and transmitting an indication to switch to using a first transmission technique if determined that the first value is above the threshold.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided in which a signal including a signal from a UE is received. System information of a neighboring eNodeB is obtained. The received signal is processed based on the system information in order to enhance the received signal with respect to the signal from the UE.
摘要:
According to certain aspects, techniques for periodically reporting channel state information (CSI) on protected and unprotected resources are provided. The protected resources may include resources in which transmissions in a first cell are protected by restricting transmissions in a second cell.
摘要:
Methods and apparatuses are provided that facilitate allocating a portion of a resource block to a power-limited device for communicating therewith. The power-limited device may not be capable of transmitting over an entire resource block due to power limitations; thus, a portion of the resource block can be assigned thereto, allowing for allocating at least a different portion of the resource block to at least one different device to optimize communications over the resource block. In addition, the portion of the resource block can be allocated across one or more bundled time transmit intervals (TTI) to allow for effective communication of time-sensitive data, such as voice over internet protocol (VoIP).
摘要:
A method of wireless communication includes detecting uplink interference in a received uplink transmission of a user equipment. The received uplink transmission is padded with noise based on the detected interference and also based on a frequency domain partition, whether a subframe is protected, and/or a user equipment type.
摘要:
A method for a wireless communication includes receiving or storing a peak to average (PAR) back off value; and applying the PAR back off value to determine the transmission power and rate for SIMO and MIMO transmissions. In one aspect, the PAR back off value is at least partially based on modulation type. In another aspect, the PAR back off value is more for higher order QAM than for QPSK. The power allocation algorithm for different UL MIMO schemes is described as follows. For MIMO without antenna permutation (e.g. per antenna rate control), different PAR back off values are considered for different data streams. For MIMO with antenna permutation or other unitary transformation such as virtual antenna mapping or precoding, the PAR back off are determined based on combined channel. The transmission data rate depends on power and also the receiver algorithms such as a MMSE receiver or MMSE-SIC receiver.
摘要:
Techniques for sending control information in a wireless communication system are described. In an aspect, a user equipment (UE) may send data for control information in a resource block with frequency division multiplexing (FDM) and may send pilot in the resource block with frequency-domain code division multiplexing (CDM). The UE may determine multiple groups of subcarriers to use to send data in multiple symbol periods of the resource block based on a predetermined pattern or a pseudo-random hopping pattern. Each group may include consecutive subcarriers to support localized FDM. The multiple groups may include different subcarriers to provide frequency diversity and possibly interference averaging. The UE may send modulation symbols for data (e.g., in the time domain) on the multiple groups of subcarriers in the multiple symbol periods. The UE may send a reference signal sequence for pilot on multiple subcarriers in each symbol period for pilot.
摘要:
In an aspect, a method assists with blind decoding of uplink control signals on a Physical Uplink Shared Channel (PUSCH) and Physical Uplink Control Channel (PUCCH). The method assists in determining the uplink control path in the event a user equipment (UE) misses an uplink grant and blind decoding occurs. It is determined whether an uplink acknowledgement, rank indicator, and/or channel quality indicator are found on a PUSCH. If not, it is determined whether a scheduling request is expected and whether special handling for the scheduling request is indicated. Depending on those determinations, and whether any decoding attempts for uplink signals are successful, either the PUSCH or PUCCH is selected as the uplink control path.