摘要:
A two-component curable adhesive or sealant composition is provided. The first component may comprise a mixture of at least one polyol selected from the group comprising a polyester polyol, a polyester-polycarbonate copolymer polyol, and combinations thereof, a resin, and optionally a solvent. The second component may comprise a prepolymer obtained by reacting a polyester-polycarbonate copolymer polyol which is the reaction product of a polyester polyol which is the reaction product of one or more organic acids, and one or more glycols having a functionality of two or more and one or more polycarbonate polyols, at least one organic polyisocyanate component, and at least one chain extending agent and optionally a solvent. Alternatively, the first component may comprise a polyester-polycarbonate copolymer polyol, a resin, and optionally a solvent. The second component may comprise a polyisocyanate curative and optionally a solvent. The cured adhesive exhibits improved hydrolytic properties while maintaining excellent processability and adhesive properties.
摘要:
Embodiments of the invention generally relate to polyols having resistance to hydrocarbons and articles made therefrom. More specifically, embodiments of the invention generally relate to hydrophilic polyester-polycarbonate polyols having resistance to hydrocarbons at high temperatures and articles made therefrom. The novel hydrophilic polyester-polycarbonate polyols described herein may be used in adhesive or elastomer applications requiring enhanced oil and/or diesel resistance. The disclosed polyols are liquid at room temperature, which facilitates processing into polyurethane products As described herein, an elastomer made from such hydrophilic polyester-polycarbonate polyols and methylene diphenyl diisocyanate (MDI) retained >90% of tensile strength after 500 hours ageing at 121 degrees Celsius. A comparative example made from a polyester polyol retained 50% of tensile strength under similar conditions.
摘要:
Disclosed are hydrophobic polyester-polycarbonate polyols which are the reaction product of (a) a polyester polyol and (b) one or more polycarbonate polyols. The polyester polyol (a) is the reaction product of: (i) one or more hydrophobic monomers, (ii) one or more organic acids, and (iii) one or more alcohols having an OH functionality of 2 or more. The polyester-polycarbonate polyols may be both amorphous and liquid at room temperature and have excellent hydrolytic stability. The hydrolytic and chemical performance of the polyester-polycarbonate polyols described herein is superior to that of commercially available hydrophobically modified polyester polyols and to that of commercially available polyester-polycarbonate polyols as described herein.
摘要:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
摘要:
Embodiments of the invention provide for methods of producing a polycarbonate polyol. The method includes charging a vessel with butanediol, charging the vessel with a polymerization catalyst, and adding to the vessel dimethyl carbonate at a rate of at least 2.0 g of DMC per minute per kg of BDO to produce polycarbonate polyol at a polycarbonate polyol yield of at least 80% of a theoretical yield.
摘要:
Embodiments of the invention provide for paper mill equipment that can better withstand the conditions of a paper mill. Embodiments encompass paper mill equipment that incorporate a polyurethane layer having a hysteresis value of less than 70% and a permanent set of less than 30%. The polyurethane layer includes a polyurethane produced by curing a mixed composition. The mixed composition includes at least a urethane prepolymer (A) and at least a curing agent (B) having an active hydrogen group (H). The urethane prepolymer (A) has at least one terminal isocyanate group and is obtained by reacting at least a polyisocyanate compound (a) with at least a polycarbonate diol compound (b) having a number average molecular weight of at least 1500 g/mol. The curing agent (B) includes at least an amine compound. The elastomer compositions are also useful to coat the acid pickling roller in the steel industry.
摘要:
Embodiments of the invention generally relate to polyurethanes having resistance to hydrocarbons and articles made therefrom. In one embodiment, a hydrocarbon resistant polycarbonate elastomer containing article is provided. The hydrocarbon resistant polycarbonate elastomer is prepared from a reaction mixture comprising (a) one or more difunctional polycarbonate polyols comprising repeating units from one or more alkane diols having 2 to 20 carbon atoms with a number average molecular weight between 500 and 3,000, and (b) one or more organic polyisocyanate components, wherein the article is selected from filter caps, conduits, containers, seals, mechanical belts, liners, coatings, rollers and machine parts.
摘要:
Methods of producing a composition comprising a crosslinkable silane-terminated polymer having at least one crosslinkable silyl group in each molecule are provided. The method may comprise providing a polymer having at least one unsaturated group and at least one alcohol hydroxyl group in each molecule and having a number average molecular weight between about 100 and about 5,000, adding to the polymer a compound having a hydrogen-silicon bond and a crosslinkable silyl group in each molecule and a hydrosilylation catalyst to thereby carry out a hydrosilylation reaction to form a composition comprising hydrosilylated polymers, wherein the hydrosilylation reaction has a hydrosilylation efficiency greater than 50% as determined by 1H-NMR, capping the hydrosilylated polymers by adding the hydrosilylated polymer to at least one isocyanate at an index of between about 100 and about 250, and reacting the isocyanate capped hydrosilylated polymer with a polyol having a nominal functionality of at least 2 to form the composition comprising a crosslinkable silane-terminated polymer.