摘要:
A semiconductor device is characterized in that source electrode contact regions, each of which is formed of a first conductivity type source layer and a second conductivity type base layer in a surface of a semiconductor surface, are formed at respective intersectional points of a diagonally-arranged lattice, and in that a trench having a gate electrode buried therein is formed so as to snake through the contact regions alternately. By virtue of the structure, the trench arrangement and source/base simultaneous contact quality are improved, to thereby increase a trench density (channel density) per unit area.
摘要:
A semiconductor device includes a diffusion area formed in a semiconductor layer of a first conductive type. The diffusion area comprises first and second impurity diffusion areas of the first and second conductive types, respectively. The diffusion area has a first and second areas which are defined by an impurity concentration of the first and second impurity diffusion areas. A junction between the first and second area is formed in a portion in which the first and second impurity diffusion areas overlap each other. A period of the impurity concentration, in a planar direction of the semiconductor layer, of the first or second area is smaller than the maximum width, in the planar direction of the semiconductor layer, of the first and second impurity diffusion areas constituting the first or second area.
摘要:
A semiconductor device includes a diffusion area formed in a semiconductor layer of a first conductive type. The diffusion area comprises first and second impurity diffusion areas of the first and second conductive types, respectively. The diffusion area has a first and second areas which are defined by an impurity concentration of the first and second impurity diffusion areas. A junction between the first and second area is formed in a portion in which the first and second impurity diffusion areas overlap each other. A period of the impurity concentration, in a planar direction of the semiconductor layer, of the first or second area is smaller than the maximum width, in the planar direction of the semiconductor layer, of the first and second impurity diffusion areas constituting the first or second area.
摘要:
The most distinctive feature of the present invention lies in that a warp and crystal defects can be prevented from occurring and a processing margin for forming an isolation groove can be improved in an intelligent power device including a power element section and an IC control section within one chip. A bonded wafer is obtained by bonding an active-layer substrate and a supporting substrate with an epitaxially grown silicon layer interposed therebetween so as to cover an oxide film selectively formed at the interface of the active-layer substrate. Isolation trenches are then formed in the bonded wafer to such a depth as to reach the oxide film from the element forming surface of the active-layer substrate. Thus, an IC controller is formed within a dielectric isolation region surrounded with the isolation trenches and the oxide film and accordingly the IC controller can effectively be isolated by a dielectric.
摘要:
There is provided a semiconductor device including a semiconductor substrate with a trench, and a particulate insulating layer filling at least a lower portion of the trench and containing insulating particles. The semiconductor device may further include a reflowable dielectric layer covering an upper surface of the particulate insulating layer, the insulating particles being stable at the melting point or the softening point of the reflowable dielectric layer.
摘要:
The present application provides a semiconductor device including a first-conductivity type semiconductor substrate, a pillar structure portion formed on the first-conductivity type semiconductor substrate and formed of five semiconductor pillar layers arranged in one direction parallel to a main surface of the first-conductivity type semiconductor substrate, and isolation insulating portions formed on the first-conductivity type semiconductor substrate and sandwiching the pillar structure portion between the isolation insulating portions, wherein the pillar structure portion is formed of a first first-conductivity type pillar layer, a second first-conductivity type pillar layer and a third first-conductivity type pillar layer which sandwich the first first-conductivity type pillar layer, a first second-conductivity type pillar layer provided between the first first-conductivity type pillar layer and the second first-conductivity type pillar layer, and a second second-conductivity type pillar layer provided between the first first-conductivity type pillar layer and the third first-conductivity type pillar layer.
摘要:
A semiconductor device comprises a semiconductor layer which includes a terminate end part and a cell formation part that is surrounded by this end part, and a plurality of guard rings each of which is formed at the end part to surround the cell formation part. These guard rings are made shallower and smaller in width as they get near to the guard ring that resides at the outside position.
摘要:
The present application provides a semiconductor device including a first-conductivity type semiconductor substrate, a pillar structure portion formed on the first-conductivity type semiconductor substrate and formed of five semiconductor pillar layers arranged in one direction parallel to a main surface of the first-conductivity type semiconductor substrate, and isolation insulating portions formed on the first-conductivity type semiconductor substrate and sandwiching the pillar structure portion between the isolation insulating portions, wherein the pillar structure portion is formed of a first first-conductivity type pillar layer, a second first-conductivity type pillar layer and a third first-conductivity type pillar layer which sandwich the first first-conductivity type pillar layer, a first second-conductivity type pillar layer provided between the first first-conductivity type pillar layer and the second first-conductivity type pillar layer, and a second second-conductivity type pillar layer provided between the first first-conductivity type pillar layer and the third first-conductivity type pillar layer.
摘要:
A first semiconductor pillar layer of a first conductivity type is formed on a main surface of a semiconductor substrate of the first conductivity type. A second semiconductor pillar layer of a second conductivity type is formed adjacent to the first semiconductor pillar layer. A third semiconductor pillar layer of the first conductivity type is formed adjacent to the second semiconductor pillar layer. A semiconductor base layer of the second conductivity type is formed on the main surface of the second semiconductor pillar layer. An insulated-gate type semiconductor element is formed in the semiconductor base layer. The carrier concentration on the side of a main surface of each of said first through third semiconductor pillar layers is higher than a carrier concentration on the opposite side of said main surface in each of said first through third semiconductor pillar layers.
摘要:
A first semiconductor pillar layer of a first conductivity type is formed on a main surface of a semiconductor substrate of the first conductivity type. A second semiconductor pillar layer of a second conductivity type is formed adjacent to the first semiconductor pillar layer. A third semiconductor pillar layer of the first conductivity type is formed adjacent to the second semiconductor pillar layer. A semiconductor base layer of the second conductivity type is formed on the main surface of the second semiconductor pillar layer. An insulated-gate type semiconductor element is formed in the semiconductor base layer. The carrier concentration on the side of a main surface of each of said first through third semiconductor pillar layers is higher than a carrier concentration on the opposite side of said main surface in each of said first through third semiconductor pillar layers.