摘要:
Disclosed is a high-strength steel plate with excellent warm workability that has a component composition comprising, in mass %, 0.05 to 0.4% C, 0.5 to 3% Si+Al, 0.5 to 3% Mn, no more than 0.15% P (not including 0%), and no more than 0.02% S (including 0%), with the remainder comprising iron and impurities, and a composition that includes a total of 45 to 80% martensite and/or bainitic ferrite in terms of the area ratio relative to the entire composition, 5 to 40% polygonal ferrite in terms of the area ratio relative to the entire composition, and 5 to 20% retained austenite in terms of the area ratio relative to the entire composition, wherein the C concentration (CγR) within said residual austenite is in the range of 0.6 mass % to less than 1.0 mass %, and that furthermore may include bainite. In the high-strength steel plate, TRIP effects are achieved to the fullest extent in warm working, and increased ductility over prior steel plates is reliably achieved.
摘要:
Disclosed is a high-strength steel plate with excellent warm workability that has a component composition comprising, in mass %, 0.05 to 0.4% C, 0.5 to 3% Si+Al, 0.5 to 3% Mn, no more than 0.15% P (not including 0%), and no more than 0.02% S (including 0%), with the remainder comprising iron and impurities, and a composition that includes a total of 45 to 80% martensite and/or bainitic ferrite in terms of the area ratio relative to the entire composition, 5 to 40% polygonal ferrite in terms of the area ratio relative to the entire composition, and 5 to 20% retained austenite in terms of the area ratio relative to the entire composition, wherein the C concentration (CγR) within said residual austenite is in the range of 0.6 mass % to less than 1.0 mass %, and that furthermore may include bainite. In the high-strength steel plate, TRIP effects are achieved to the fullest extent in warm working, and increased ductility over prior steel plates is reliably achieved.
摘要:
This high-strength steel plate has a component composition including, by mass %, C: 0.02-0.3%, Si: 1-3%, Mn: 1.8-3%, P: 0.1% or less, S: 0.01% or less, Al: 0.001-0.1%, N: 0.002-0.03%, the rest consisting of iron and impurities. Said steel plate has a microstructure including, in terms of area ratio relative to the entire microstructure, each of the following phases: bainitic ferrite: 50-85%; retained γ: 3% or greater; martensite+the aforementioned retained γ: 10-45%; and ferrite: 5-40%. The C concentration (CγR) in the aforementioned retained austenite is 0.3-1.2 mass %, part or all of the N in the aforementioned component composition is solid solution N, and the amount of said solid solution N is 30-100 ppm.
摘要:
This high-strength steel sheet has a component composition containing, in mass %, 0.02 to 0.3% C, 1 to 3% Si, 1.8 to 3% Mn, 0.1% or less P, 0.01% or less S, 0.001 to 0.1% Al, and 0.002 to 0.03% N, the remainder being iron and impurities. The high-strength steel sheet has a structure containing, in terms of area ratio relative to the entire structure, each of the following phases: 50 to 85% bainitic ferrite; 3% or more retained austenite (γ); 10 to 45% martensite and the aforementioned retained austenite (γ); and 5 to 40% ferrite. The ratio between the Mn concentration (MnγR) in the retained austenite (γ) and the average Mn concentration (Mnav) in the entire structure is 1.2 or more (MnγR/ Mnav) based on the Mn concentration distribution obtained by means of EPMA line analysis. As a consequence, the high-strength steel sheet exhibits strength of 980 MPa or more and exerts excellent deep drawability.
摘要:
The invention provides a high-strength cold-rolled steel sheet which is improved in elongation and stretch-flangeability and exhibits more excellent formability. The high-strength cold-rolled steel sheet has a composition which contains by mass C: 0.03 to 0.30%, Si: 0.1 to 3.0%, Mn: 0.1 to 5.0%, P: 0.1% or below, S: 0.005% or below, N: 0.01% or below, and Al: 0.01 to 1.00% with the balance consisting of iron and unavoidable impurities. The high-strength cold-rolled steel sheet has a structure which comprises at least 40% (up to 100% inclusive) in terms of area fraction of tempered martensite having a hardness of 300 to 380 Hv and the balance ferrite. The cementite particles in the tempered martensite take such dispersion that 10 or more cementite particles having equivalent-circle diameters of 0.02 to less than 0.1 μm are present per one μm2 of the tempered martensite and three or fewer cementite particles having equivalent-circle diameters of 0.1 μm or above are present per one μm2 of the tempered martensite.
摘要:
A cold-rolled steel sheet of the present invention which has a composition containing, in terms of % by mass, C: 0.05-0.30%, Si: 3.0% or less (including 0%), Mn: 0.1-5.0%, P: 0.1% or less (including 0%), S: 0.010% or less (including 0%), and Al: 0.001-0.10%, and remainder being mainly iron, and which has a structure comprising, in terms of area ratio, 10-80% ferrite, less than 5% (including 0%) of the sum of retained austenite and martensite, and a hard phase as the remainder. The steel sheet gives a KAM value frequency distribution curve in which the relationship between the proportion of frequency having a KAM value ≦0.4, XKAM≦0.4°, and the area ratio of ferrite, Vα satisfies XKAM≦0.4°/Vα≧0.8 and the proportion of frequency having a KAM value in the range of 0.6-0.8, XKAM=0.6-0.8° is 10-20%. In the hard phase adjoining the ferrite, cementite, grains having an equivalent circle diameter of 0.1 μm or larger exist so that three or less such cementite grains are dispersed per μm2 of the hard phase. The steel sheet has improved balance between elongation and stretch flangeability and has better formability.
摘要:
The invention provides a high-strength cold-rolled steel sheet which is improved in elongation and stretch-flangeability and exhibits more excellent formability. The high-strength cold-rolled steel sheet has a composition which contains by mass C: 0.03 to 0.30%, Si: 0.1 to 3.0%, Mn: 0.1 to 5.0%, P: 0.1% or below, S: 0.005% or below, N: 0.01% or below, and Al: 0.01 to 1.00% with the balance consisting of iron and unavoidable impurities. The high-strength cold-rolled steel sheet has a structure which comprises at least 40% (up to 100% inclusive) in terms of area fraction of tempered martensite having a hardness of 300 to 380 Hv and the balance ferrite. The cementite particles in the tempered martensite take such dispersion that 10 or more cementite particles having equivalent-circle diameters of 0.02 to less than 0.1 μm are present per one μm2 of the tempered martensite and three or fewer cementite particles having equivalent-circle diameters of 0.1 μm or above are present per one μm2 of the tempered martensite.
摘要:
This high-strength steel sheet has a component composition containing, in mass %, 0.02 to 0.3% C, 1 to 3% Si, 1.8 to 3% Mn, 0.1% or less P, 0.01% or less S, 0.001 to 0.1% Al, and 0.002 to 0.03% N, the remainder being iron and impurities. The high-strength steel sheet has a structure containing, in terms of area ratio relative to the entire structure, each of the following phases: 50 to 85% bainitic ferrite; 3% or more retained austenite (γ); 10 to 45% martensite and the aforementioned retained austenite (γ); and 5 to 40% ferrite. The ratio between the Mn concentration (MnγR) in the retained austenite (γ) and the average Mn concentration (Mnav) in the entire structure is 1.2 or more (MnγR/ Mnav) based on the Mn concentration distribution obtained by means of EPMA line analysis. As a consequence, the high-strength steel sheet exhibits strength of 980 MPa or more and exerts excellent deep drawability.
摘要:
Disclosed is a high-strength cold-rolled steel sheet which has improved stretch-flange formability while keeping excellent hydrogen embrittlement resistance. The cold-rolled steel sheet comprises 0.03 to 0.30% by mass of C, 3.0% by mass or less (including 0% by mass) of Si, more than 0.1% by mass and not more than 2.8% by mass of Mn, 0.1% by mass or less of P, 0.005% by mass or less of S, 0.01% by mass or less of N, and 0.01 to 0.50% by mass of Al. The cold-rolled steel sheet additionally comprises V in an amount of 0.001 to 1.00% by mass or one or more elements selected from Nb, Ti and Zr in the total amount of 0.01% by mass or more, with the remainder being made up by iron and unavoidable impurities, wherein the contents of one or more elements selected from Nb, Ti and Zr fulfils the requirement represented by the following formula: [% C]−[% Nb]/92.9×12−[% Ti]/47.9×12−[% Zr]/91.2×12>0.03. In the cold-rolled steel sheet, the area ratio of tempered martensite is 50% or more (including 100%), and ferrite makes up the remainder. In the cold-rolled steel sheet, the distribution of precipitates in the tempered martensite is as follows: the number of precipitates each having a circle-equivalent diameter of 1 to 10 nm is 20 particles or more per 1 μm2 of the tempered martensite and the number of precipitates each containing V or at least one element selected from Nb, Ti and Zr and each having a circle-equivalent diameter of 20 nm or more is 10 particles or less per 1 μm2 of the tempered martensite.
摘要:
A high-strength steel sheet has a chemical composition including 0.05% to 0.3% of C, 1% to 3% of Si, 0.5% to 3% of Mn, 0% to 0.1% of P, 0.001% to 0.1% of Al, and 0.002% to 0.03% of N, in mass percent; further includes iron and impurities; and has a structure including 50% to 90% of bainitic ferrite, 5% to 20% of retained austenite (γR), a total of 10% to 50% of martensite and the retained austenite, and 0% to 40% of polygonal ferrite, in area percent based on the entire structure. The retained austenite has a carbon content (CγR) of 0.5% to 1.2% by mass, an average equivalent circle diameter of 0.2 to 2 μm, and an average aspect ratio (maximum diameter/minimum diameter) of less than 3.0. The high-strength steel sheet excels both in elongation and deep drawability while having a strength of 980 MPa or more.