摘要:
Systems and methods are provided for processing a heavy oil feed, such as an atmospheric or vacuum resid, using a combination of solvent assisted hydroprocessing and slurry hydroconversion of a heavy oil feed. The systems and methods allow for conversion and desulfurization/denitrogenation of a feed to form fuels and gas oil (or lubricant base oil) boiling range fractions while reducing the portion of the teed that is exposed to the high severity conditions present in slurry hydroconversion.
摘要:
Systems and methods are provided for processing a heavy oil feed, such as an atmospheric or vacuum resid, using a combination of solvent assisted hydroprocessing and slurry hydroconversion of a heavy oil feed. The systems and methods allow for conversion and desulfurization/denitrogenation of a feed to form fuels and gas oil (or lubricant base oil) boiling range fractions while reducing the portion of the feed that is exposed to the high severity conditions present in slurry hydroconversion.
摘要:
Methods and systems for enhanced carbon dioxide capture in a combined cycle plant are described. A method includes compressing a recycle exhaust gas from a gas turbine system, thereby producing a compressed recycle exhaust gas stream. A purge stream is extracted from the compressed recycle exhaust gas stream. Carbon dioxide is removed from the extracted purge stream using a solid sorbent.
摘要:
The present invention provides a high capacity adsorbent for removing sulfur from hydrocarbon streams. The adsorbent comprises a composite material containing particles of a nickel phosphide complex NixP. The adsorbent is utilized in a sulfur removal process that does not require added hydrogen, and run at relatively low temperatures ranging from about 150° C. to about 400° C. The process of this invention enables “ultra-deep” desulfurization down to levels of about 1 ppm and less.
摘要:
A reaction-based process developed for the selective removal of CO2 from a multicomponent gas mixture to provide a gaseous stream depleted in CO2 compared to the inlet CO2 concentration. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 (CaRS-CO2) process consists of contacting CO2 laden gas with CaO in a reactor such that CaO captures CO2 by the formation of CaCO3. CaCO3 is regenerated by calcination leading to the formation of fresh CaO sorbent and the evolution of a concentrated stream of CO2. The “regenerated” CaO is then recycled for the further capture of CO2. This carbonation-calcination cycle forms the basis of the CaRS-CO2 process. This process also may use a mesoporous CaCO3 structure that attains >90% conversion over multiple carbonation and calcination cycles.
摘要:
A method for sending Short Message Service (SMS) messages includes receiving a request to generate a senderID, determining senderIDs based on a business name, and receiving a selected senderID from the senderIDs. The method further includes receiving a request to send an SMS message using the selected senderID, and sending a request to an SMS server to send the SMS message using the senderID.
摘要:
In the context of cloud computing, effective methods and arrangements for storing and tracking provenance. In accordance with at least one embodiment, a distributed file system is advantageously employed to store large amounts of provenance data. File creation involves the creation both of output files and reduce logs.
摘要:
A method of associating a given text document with relevant structured data is disclosed. The method receives as inputs a text document, and structured data in the form of a relational database. The method then identifies terms in the text document, and searches and queries the structured data using the terms to identify fragments of the structured data that are relevant to the document. Finally, the text document and the identified fragments of structured data are output to a user.
摘要:
A reaction-based process has been developed for the selective removal of carbon dioxide from a multicomponent gas mixture. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 process consists of contacting a CO2 laden gas with calcium oxide in a reactor such that CaO captures the CO2 by the formation of calcium carbonate. Once “spent”, CaCO3 is regenerated by its calcination leading to the formation of fresh CaO sorbent. The “regenerated” CaO is then recycled for the further capture of more CO2. This process also identifies the application of a mesoporous CaCO3 structure, that attains >90% conversion over multiple carbonation and calcination cycles. Lastly, thermal regeneration (calcination) under vacuum provided a better sorbent structure that maintained reproducible reactivity levels over multiple cycles.