摘要:
Disclosed is a communication system that transmits data through a transmission path between a transmission side apparatus and a reception side apparatus, wherein the transmission side apparatus comprises a coding apparatus that creates redundantly-coded data from original data; a transmitting apparatus that sends the coded data coded by the coding unit to the transmission path; and a coding rate determining apparatus that sets and controls a coding rate in the coding unit, wherein the reception side apparatus comprises a receiving apparatus that receives the coded data sent through the transmission path; a decoding apparatus that decodes the original data from the coded data received; and a loss rate estimating apparatus that measures the loss rate on the path of the coded data sent, and wherein the coding rate determining apparatus of the transmission side apparatus varies and controls the coding rate in the coding apparatus based on the loss rate obtained.
摘要:
Disclosed is a communication system that transmits data through a transmission path between a transmission side apparatus and a reception side apparatus, wherein the transmission side apparatus comprises a coding apparatus that creates redundantly-coded data from original data; a transmitting apparatus that sends the coded data coded by the coding unit to the transmission path; and a coding rate determining apparatus that sets and controls a coding rate in the coding unit, wherein the reception side apparatus comprises a receiving apparatus that receives the coded data sent through the transmission path; a decoding apparatus that decodes the original data from the coded data received; and a loss rate estimating apparatus that measures the loss rate on the path of the coded data sent, and wherein the coding rate determining apparatus of the transmission side apparatus varies and controls the coding rate in the coding apparatus based on the loss rate obtained.
摘要:
The data dividing unit divides data into n pieces. An encoding unit generates m pieces of encoded data composed of a set of a bitmap matrix specifying a plurality pieces of divided data for obtaining exclusive OR (XOR) and exclusive OR data including exclusive OR of the plurality pieces of divided data specified by the bitmap matrix, wherein m is equal to or more than a dividing number n and according to redundancy. A distributed saving unit distributes and saves the m pieces of encoded data to and in storage devices at two or more locations and m or less locations. A decoding unit restores the original data by retrieving restorable k or more pieces of the encoded data among the distributed and saved m pieces of encoded data and subjecting the bitmap matrix of the retrieved encoded data to conversion into a unit matrix.
摘要:
Single-crystal silicon is deposited on an insulating substrate (1) with a crystalline sapphire layer (50) formed thereon as a seed, to form a silicon epitaxial layer (7). P-type impurity ions are implanted into a single-crystal silicon layer, and then N-type impurity ions are implanted to make a P-channel MOS transistor portion a single-crystal silicon layer (14). In a single-crystal silicon layer (11), an N+ source region (20) and drain region (21) of an N-channel MOS transistor are formed. Thus, a silicon layer is epitaxially grown uniformly at low temperatures.
摘要:
An electro-optic device, such as an LCD, includes a display unit and a peripheral drive circuit unit on a single substrate. A gate comprising a gate electrode and gate insulation film is formed on a surface of the substrate. A layer of a substance having good lattice compatibility with manocrystalline silicon is formed over the gate insulation film. A layer of monocrystalline silicon is formed over the substance layer. Manocrystalline silicon is heteroepitaxially grown by catalytic CVD or the like using a crystalline sapphire film formed on the substrate to form the monocrystalline silicon layer. The monocrystalline silican layer is used as a dual gate MOSTFT of the electro-optic device.
摘要:
A single crystal silicon is graphoepitaxially grown using a step formed on a substrate as a seed by a catalyst process, and the obtained single crystal silicon layer is used for a dual gate type MOSTFT in an electro-optical apparatus such as a display section of a peripheral driving circuit integration type LCD. A single crystal silicon thin film having high electron/hole mobility is formed into a uniform film at a relatively low temperature, which enables the manufacturing of an active matrix substrate incorporated with a high-performance driver which can be used in a TFT display.
摘要:
An electro-optic device, such as an LCD, includes a display unit and a peripheral drive circuit unit on a single substrate. A gate comprising a gate electrode and gate insulation film is formed on a surface of the substrate. A layer of a substance having good lattice compatibility with monocrystalline silicon is formed over the gate insulation film. A layer of monocrystalline silicon is formed over the substance layer. Monocrystalline silicon is heteroepitaxially grown by catalytic CVD or the like using a crystalline sapphire film formed on the substrate to form the monocrystalline silicon layer. The monocrystalline silicon layer is used as a dual gate MOSTFT of the electro-optic device.
摘要:
A single crystal silicon is graphoepitaxially grown using a step formed on a substrate as a seed by a catalyst process, and the obtained single crystal silicon layer is used for a dual gate type MOSTFT in an electro-optical apparatus such as a display section of a peripheral driving circuit integration type LCD. A single crystal silicon thin film having high electron/hole mobility is formed into a uniform film at a relatively low temperature, which enables the manufacturing of an active matrix substrate incorporated with a high-performance driver which can be used in a TFT display.