摘要:
A method of producing a silicon-on-insulator article, the method including: forming a first aluminum nitride layer thermally coupled to a first silicon substrate; forming a second aluminum nitride layer thermally coupled to a second substrate, the second substrate including at least a surface layer of silicon; bonding the first and second aluminum nitride layers of the first and second substrates together so that the first and second aluminum nitride layers are disposed between the first and second substrates; and removing most of the second substrate to leave a layer of silicon that is electrically insulated from but thermally coupled to the first silicon substrate by the first and second aluminum nitride layers.
摘要:
A method of producing a silicon-on-insulator article, the method including: forming a first aluminium nitride layer thermally coupled to a first silicon substrate; forming a second aluminium nitride layer thermally coupled to a second substrate, the second substrate including at least a surface layer of silicon; bonding the first and second aluminium nitride layers of the first and second substrates together so that the first and second aluminium nitride layers are disposed between the first and second substrates; and removing most of the second substrate to leave a layer of silicon that is electrically insulated from but thermally coupled to the first silicon substrate by the first and second aluminium nitride layers.
摘要:
A substrate for an integrated circuit includes a device wafer having a raw carrier concentration and an epitaxial layer disposed over the device wafer. The epitaxial layer has a first carrier concentration. The first carrier concentration is higher than the raw carrier concentration.
摘要:
A method of fabrication of semiconductor substrate structure comprising the following. A buffer layer is formed on the Si Substrate. We form a SiGe layer on the novel buffer layer. The buffer layer has defects therein so that the buffer layer is oxidized to form a buried isolation layer comprised of silicon oxide and an oxide layer and oxidize the SiGe layer for form a oxide layer. The oxide layer is then removed. An upper semiconductor layer (e.g., Si, SiGe or Ge layer) is epitaxially formed on the SiGe layer. Devices are formed on said an upper semiconductor layer. The buffer layer can be formed by several aspects.
摘要:
A method of manufacturing a semiconductor device comprises a step of depositing a crystalline insulating layer oriented in a predetermined crystal face orientation by epitaxial growth on an amorphous semiconductor layer, a step of depositing a second amorphous semiconductor layer on the crystalline insulating layer, a step of growing said first and second semiconductor layers into a polycrystal or single crystal layer in a solid phase, using said crystalline insulating film as core, and a step of forming a functional element containing said first and second semiconductor layer.
摘要:
A method of forming a high germanium concentration, low defect density silicon germanium film and its associated structures is described, comprising forming a dielectric layer on a substrate, patterning the dielectric layer to form a silicon region and at least one dielectric region, and forming a low defect silicon germanium layer on at least one dielectric region.
摘要:
A method of forming buried cavities in a wafer of monocrystalline semiconductor material with at least one cavity formed in a substrate of monocrystalline semiconductor material by timed TMAH etching silicon; covering the cavity with a material inhibiting epitaxial growth; and growing a monocrystalline epitaxial layer above the substrate and the cavities. Thereby, the cavity is completely surrounded by monocrystalline material. Starting from this wafer, it is possible to form a thin membrane. The original wafer must have a plurality of elongate cavities or channels, parallel and adjacent to one another. Trenches are then excavated in the epitaxial layer as far as the channels, and the dividers between the channels are removed by timed TMAH etching.
摘要:
A method is provided for fabricating an SOI water. This may involve forming a silicon substrate and implanting oxygen into the substrate. Damaged portions of the implanted silicon may be healed/cured by CMP or anneal, for example. An epi layer may then be deposited over the healed/cured regions of the substrate. The substrate may then be annealed to form an insulative layer. The wafer may be thinned to provide the proper thickness of the epi layer.
摘要:
A method for providing an SOI wafer that includes, on a wafer of monocrystalline semiconductor material, forming a hard mask of an oxidation-resistant material, defining first protective regions covering first portions of the wafer; excavating the second portions of the wafer, forming initial trenches extending between the first portions of the wafer; thermally oxidating the wafer, forming a sacrificial oxide layer extending at the lateral and base walls of the initial trenches, below the first protective regions; and wet etching the wafer, to completely remove the sacrificial oxide layer. Thereby, intermediate trenches are formed, the lateral walls of which are recessed with respect to the first protective regions. Subsequently, a second oxide layer is formed inside the intermediate trenches; a second silicon nitride layer is deposited; final trenches are produced; a buried oxide region is formed, and finally an epitaxial layer is grown.
摘要:
A method of forming a semiconductor device with a SEG layer and isolating elements formed in the device includes forming an insulating layer for isolating elements on a silicon substrate. An open area is formed in the insulating layer to expose the surface of the silicon substrate by selectively etching the insulating layer. The open area in the insulating layer includes an inclined side wall at a positive angle of inclination. An epitaxial layer is selectively grown to have a top surface lower than the surface of the insulating layer, using the silicon exposed in the open area as a seed. A sacrificial oxide layer is formed on the surface of the silicon of the epitaxial growth, and the sacrificial oxide layer is then removed.