摘要:
Crystalline superfine particles capable of emitting light depending upon a time-rate-of-change of a stress and controlled in grain size in the range from 5 nm to 100 nm are complexed with another material such as resin. The crystalline superfine particles are manufactured by using aggregates of molecules, i.e. inverted micelles, which orient hydrophilic groups of surfactant molecules inward and hydrophobic groups outward in a nonpolar solvent and which contain metal ions of a metal for forming the crystalline superfine particles dissolved in water inside the inverted micelles. Alternatively, they are manufactured by using inverted micelles enveloping precursor superfine particles, in which precursor superfine particles are enveloped in water inside the inverted micelles. The crystalline superfine particles are excellent in dispersibility in another material to be complexed, enhanced in emission efficiency and usable to make a transparent stress emission material. The complex material obtained is used to manufacture artificial light-emitting hair structures, artificial light-emitting skin, artificial light-emitting bodies, artificial light-emitting fabrics, and others.
摘要:
Crystalline superfine particles capable of emitting light depending upon a time-rate-of-change of a stress and controlled in grain size in the range from 5 nm to 100 nm are complexed with another material such as resin. The crystalline superfine particles are manufactured by using aggregates of molecules, i.e. inverted micelles, which orient hydrophilic groups of surfactant molecules inward and hydrophobic groups outward in a nonpolar solvent and which contain metal ions of a metal for forming the crystalline superfine particles dissolved in water inside the inverted micelles. Alternatively, they are manufactured by using inverted micelles enveloping precursor superfine particles, in which precursor superfine particles are enveloped in water inside the inverted micelles. The crystalline superfine particles are excellent in dispersibility in another material to be complexed, enhanced in emission efficiency and usable to make a transparent stress emission material. The complex material obtained is used to manufacture artificial light-emitting hair structures, artificial light-emitting skin, artificial light-emitting bodies, artificial light-emitting fabrics, and others.
摘要:
Crystalline superfine particles capable of emitting light depending upon a time-rate-of-change of a stress and controlled in grain size in the range from 5 nm to 100 nm are complexed with another material such as resin. The crystalline superfine particles are manufactured by using aggregates of molecules, i.e. inverted micelles, which orient hydrophilic groups of surfactant molecules inward and hydrophobic groups outward in a nonpolar solvent and which contain metal ions of a metal for forming the crystalline superfine particles dissolved in water inside the inverted micelles. Alternatively, they are manufactured by using inverted micelles enveloping precursor superfine particles, in which precursor superfine particles are enveloped in water inside the inverted micelles. The crystalline superfine particles are excellent in dispersibility in another material to be complexed, enhanced in emission efficiency and usable to make a transparent stress emission material. The complex material obtained is used to manufacture artificial light-emitting hair structures, artificial light-emitting skin, artificial light-emitting bodies, artificial light-emitting fabrics, and others.
摘要:
Crystalline superfine particles capable of emitting light depending upon a time-rate-of-change of a stress and controlled in grain size in the range from 5 nm to 100 nm are complexed with another material such as resin. The crystalline superfine particles are manufactured by using aggregates of molecules, i.e. inverted micelles, which orient hydrophilic groups of surfactant molecules inward and hydrophobic groups outward in a nonpolar solvent and which contain metal ions of a metal for forming the crystalline superfine particles dissolved in water inside the inverted micelles. Alternatively, they are manufactured by using inverted micelles enveloping precursor superfine particles, in which precursor superfine particles are enveloped in water inside the inverted micelles. The crystalline superfine particles are excellent in dispersibility in another material to be complexed, enhanced in emission efficiency and usable to make a transparent stress emission material. The complex material obtained is used to manufacture artificial light-emitting hair structures, artificial light-emitting skin, artificial light-emitting bodies, artificial light-emitting fabrics, and others.
摘要:
A solid-state displacement element includes an inorganic layered compound having a layered structure and an organic substance inserted between layers of the inorganic layered compound. The solid-state displacement element expands or contracts in the lamination direction of the inorganic layered compound when irradiated with controlling light. An optical element and an interference filter using the same principle of expansion or contraction as that in the solid-state displacement element are also disclosed.
摘要:
A driving system using an intercalation substance as a novel mechanochemical system includes an actuator using the intercalation substance and driven by exchange of solutions or by changing concentration of a solution, and a solution supplier that supplies the actuator with the driving solution or solutions. The actuator is composed of one or more cylindrical or fiber-shaped elements each extending in the expanding and contracting direction of the intercalation substance, or one or more film-shaped or plate-shaped elements each having a major surface extending vertically of the expanding and contracting direction of the intercalation substance. The driving system is used as artificial muscle, for example.
摘要:
An epitaxial rare earth oxide (001)/silicon (001) structure is realized by epitaxially growing a rare earth oxide such as cerium dioxide in the (001) orientation on a (001)-oriented silicon substrate. For this purpose, the surface of the (001)-oriented Si substrate is processed into a dimer structure by 2×1, 1×2 surface reconstruction, and a rare earth oxide of a cubic system or a tetragonal system, such as CeO2 film, is epitaxially grown in the (001) orientation on the Si substrate by molecular beam epitaxy, for example. During this growth, a source material containing at least one kind of rare earth element is supplied after the supply of an oxidic gas is supplied onto the surface of the Si substrate. If necessary, annealing is conducted in vacuum after the growth.
摘要:
An epitaxial rare earth oxide (110)/silicon (001) structure is realized by epitaxially growing a rare earth oxide such as cerium dioxide in the (110) orientation on a (001)-oriented silicon substrate at a growth temperature lower than conventional ones. For this purpose, the surface of the (001)-oriented Si substrate is processed into a dimer structure by 2×1, 1×2 surface reconstruction, and a rare earth oxide of a cubic system or a tetragonal system, such as CeO2 film, is epitaxially grown in the (110) orientation on the Si substrate in an atmosphere containing an oxidic gas by using a source material made up of at least one kind of rare earth element. During this growth, a source material containing at least one kind of rare earth element is supplied after the supply of an oxidic gas is supplied onto the surface of the Si substrate.
摘要:
An epitaxial rare earth oxide (001)/silicon (001) structure is realized by epitaxially growing a rare earth oxide such as cerium dioxide in the (001) orientation on a (001)-oriented silicon substrate. For this purpose, the surface of the (001)-oriented Si substrate is processed into a dimer structure by 2×1, 1×2 surface reconstruction, and a rare earth oxide of a cubic system or a tetragonal system, such as CeO2 film, is epitaxially grown in the (001) orientation on the Si substrate by molecular beam epitaxy, for example. During this growth, a source material containing at least one kind of rare earth element is supplied after the supply of an oxidic gas is supplied onto the surface of the Si substrate. If necessary, annealing is conducted in vacuum after the growth.
摘要:
A heat transport device includes a working fluid, an evaporation portion, a condenser portion, a flow path portion, a concave portion, and a protrusion portion. The evaporation portion causes the working fluid to evaporate from a liquid phase to a vapor phase. The condenser portion communicates with the evaporation portion, and causes the working fluid to condense from the vapor phase to the liquid phase. The flow path portion causes the working fluid condensed in the condenser portion to the liquid phase to flow to the evaporation portion. The concave portion is provided on at least one of the evaporation portion and the flow path portion, in which the liquid-phase working fluid flows. The protrusion portion is made of nanomaterial protruding from an inner wall side surface of the concave portion such that the protrusion portion partially covers an opening surface of the concave portion.